!
"!
Abstract
In magnetic resonance imaging (MRI), slice-to-volume
reconstruction (SVR) refers to computational reconstruction
of an unknown 3D magnetic resonance volume from stacks
of 2D slices corrupted by motion. While promising, current
SVR methods require multiple slice stacks for accurate 3D
reconstruction, leading to long scans and limiting their use
in time-sensitive applications such as fetal fMRI. Here, we
propose a SVR method that overcomes the shortcomings of
previous work and produces state-of-the-art reconstructions
in the presence of extreme inter-slice motion. Inspired by the
recent success of single-view depth estimation methods, we
formulate SVR as a single-stack motion estimation task and
train a fully convolutional network to predict a motion stack
for a given slice stack, producing a 3D reconstruction as a
byproduct of the predicted motion. Extensive experiments on
the SVR of adult and fetal brains demonstrate that our fully
convolutional method is twice as accurate as previous SVR
methods. Our code is available at github.com/seannz/svr.
1. Introduction
! #$%!&$&'(&)*+(),!(-*.(&.!$/!01,!2%*(&!31,%,!01,!+425,60!
-*7!8$0,&0(*997!,:1(2(0!+,),%,!4&6$&0%$99*29,!-$0($&;+461!
*+!(&!01,!6*+,!$/!01,!/,0*9!8$849*0($&;03$'<(-,&+($&*9!=>?@!
-*.&,0(6!%,+$&*&6,!(-*.(&.!=ABC@!0,61&(D4,+!*%,!078(6*997!
4+,<!0$!*6D4(%,!*!+0*6E!$/!>?!2%*(&!+9(6,+!*&<!*++,-29,!01,-!
(&0$!*!F?!)$94-,G!*!6$-840*0($&*9!8%$6,<4%,!$/0,&!%,/,%%,<!
0$!*+!+9(6,'0$')$94-,!%,6$&+0%460($&!=HIB@J!K&9(E,!F?!ABC!
*6D4(+(0($&+!31,%,!01,! ,&0(%,!𝑘'+8*6,!=#$4%(,%@! 6$,L6(,&0+!
6*&!2,6$-,!6$%%480,<!,),&!/%$-!*!+(&.9,!-$0($&!,),&0G!>?!
0,61&(D4,+!6*&!%,+0%(60!01(+!6$%%480($&!0$!3(01(&!*!+9(6,!31(9,!
9,*)(&.!01,!𝑘'+8*6,!<*0*!/$%!01,!$01,%!+9(6,+!(&0*60J!M,!HIB!
8%$6,<4%,!6*&!01,&!2,!*889(,<!$&!01,!&$&'6$%%480,<!+9(6,+!0$!
,&*29,!*%0(/*60'/%,,!(-*.(&.!$/!01,!2%*(&!*&<!/*6(9(0*0,!$01,%!
<$3&+0%,*-!0*+E+G!+461!*+!2%*(&!-$%81$-,0%7 N"OFPG!31$9,!
2%*(&!+,.-,&0*0($&!NQORP!*&<!*09*+!6%,*0($&!NSOTPJ
! U!9*%.,!&4-2,%!$/!69*++(6*9!HIB!0,61&(D4,+!N"VO"WP!*%,!
<,+6,&<,<!/%$-!01,!3$%E!$/!B$4++,*4!,0!*9J!N"TPG!31,%,!01,!
HIB!0*+E!(+!8$+,<!*+!*&!$80(-(X*0($&!8%$29,-!0$!%,6$),%!*&!
4&E&$3&!F?!)$94-,!/%$-!$2+,%),<!>?!+9(6,+J!H461!(&),%+,!
-,01$<+!<$!&$0!1*),!01,!6*8*2(9(07!0$!9,*%&!01,!9*0,&0!+8*6,!
$/!%,6$&+0%460($&+G!*&<!*+!*!%,+490G!078(6*997!%,D4(%,!-490(89,!
$%01$.$&*9!+9(6,!+0*6E+!0$!6%$++'%,.49*%(X,!01,!,+0(-*0($&!$/!
01,!-$0($&!$/!,*61!+0*6EG!*<<(&.!*!6$-840*0($&*9!24%<,&!0$!
*&!*9%,*<7!(0,%*0(),!&4-,%(6*9!-,01$<J!A$%,!%,6,&0!-,01$<+!
N>VO>YP!$),%6$-,!01,!24%<,&!$/!&4-,%(6*9!$80(-(X*0($&!27!
<(%,6097!8%,<(60(&.!01,!8$+(0($&!8*%*-,0,%+!$/!>?!+9(6,+!3(01!
&,4%*9!&,03$%E!-$<,9+J!Z$3,),%G!01,+,!*88%$*61,+!8%$6,++!
+9(6,+!(&<,8,&<,&097!$/!,*61!$01,%!*&<!6*&&$0!6$&+0%*(&!01,!
%,6$&+0%460($&!(&!F?!+8*6,!N>VO>>P!$%!%,D4(%,!-490(89,!+9(6,!
+0*6E+!/$%!*664%*0,!%,6$&+0%460($&!N>YPG!8%,694<(&.!01,(%!4+,!
(&!0(-,'+,&+(0(),!*889(6*0($&+!+461!*+!/,0*9!/ABC!N>RG!>SPJ!
! C&!01,!69$+,97!%,9*0,<!0*+E+!$/!8*(%3(+,!(-*.,!%,.(+0%*0($&!
N>WOF>PG!-$0($&!NFFOFTP!*&<!<,801!,+0(-*0($&!NQVOQFPG!/4997!
6$&)$940($&*9!&,03$%E!=#[\@!*%61(0,604%,+!1*),!2,,&!4+,<!
Figure 1: Method overview. Inspired by monocular disparity estimation (a), we tackle slice-to-volume reconstruction (b) by predicting
slice
motion from a single stack of 2D slices using a fully convolutional network model. ?e intensities of the 2D slices are splatted using the slice
motion predicted by our network and the splatting is then interpolated to produce an artifact-free 3D MR reconstruction.!
(a) Monocular Depth (Disparity) Estimation [38–41] (b) Single-Stack Slice-to-Volume Reconstruction (Proposed)
Splat and
Interpolate
Standard
U-Net
Splat–Slice
U-Net
Single View Disparity Map Single Slice Stack Motion Stack 3D Reconstruction
Fully Convolutional Slice-to-Volume Reconstruction for Single-Stack MRI
Sean I. Young* Yaël Balbastre*
Harvard Medical School Harvard Medical School
siyoung@mit.edu ybalbastre@mgh.harvard.edu!
Bruce Fischl Polina Golland Juan Eugenio Iglesias
Harvard Medical School MIT Harvard Medical School
fischl@nmr.mgh.harvard.edu polina@csail.mit.edu jei@mit.edu
!
!
!
*?ese authors contributed equally to this work.
!
>!
0$!,&*29,!*664%*0,!&$&'(0,%*0(),!8%,<(60($&!$/!*&!4&<,%97(&.!
<,/$%-*0($&G!-$0($&!*&<!<(+8*%(07!/%$-!*!8*(%!$/!(-*.,+J!]7!
/$%-49*0(&.!01,!HIB!0*+E!*+!*!+48,%)(+,<!-$0($&!,+0(-*0($&!
8%$29,-G!3,!6*&!%,<46,!01,!0*+E!*0!1*&<!0$!*!8%$29,-!01*0!(+!
-$%,!%,*<(97!0*6E9,<!4+(&.!*!6$&)$940($&*9!/%*-,3$%EJ!M(+!
6$&)$940($&*9!*88%$*61!0$!HIB!2,*%+!*!6,%0*(&!%,+,-29*&6,!
0$!-$&$649*%!<,801!,+0(-*0($&G!31,%,!<(+8*%(07!(+!8%,<(60,<!
/%$-!*!+(&.9,!)(,3!NQ>PJ!M(+!(+!(994+0%*0,<!(&!#(.4%,!"J!
! C&!01(+!3$%EG!3,!8%$8$+,!*!/4997!6$&)$940($&*9!-,01$<!/$%!
HIB!3(01!*889(6*0($&!0$!+(&.9,'+0*6E!ABCJ!^,!8$+,!01,!HIB!
0*+E!*+!*!+48,%)(+,<!(-*.,!%,.(+0%*0($&!8%$29,-!*&<!0%*(&!*!
6$&)$940($&*9!&,03$%E!$&!8*(%,<!=+9(6,!+0*6EG!-$0($&!+0*6E@!
<*0*!0$!8%,<(60!+9(6,!-$0($&!<(%,6097G!8%$<46(&.!*!F?!)$94-,!
%,6$&+0%460($&!*+!*!%,+490!=#(.4%,!>@J!_4%!*88%$*61!%,D4(%,+!
$&97!*!+(&.9,!+9(6,!+0*6E!/$%!%,6$&+0%460($&G!(+!-*&7!$%<,%+!$/!
-*.&(04<,!/*+0,%!01*&!$80(-(X*0($&!*88%$*61,+!N"VO"WPG!*&<!
%,<46,+!,%%$%!(&!01,!8%,<(60,<!-$0($&!27!2×!6$-8*%,<!0$!01,!
%,6,&0!0%*&+/$%-,%'2*+,<!-$<,9!N>YPJ!_4%!6$&0%(240($&+!*%,`!
SplatSlice U-Net Model. ^,!(&0,%8%,0!01,!(0,%*0($&+!$/!
69*++(6*9!HIB!*+!*!+,%(,+!$/!+89*0!*&<!+9(6,!$8,%*0($&+!0$!
<,+(.&!*!F?!#[\!-$<,9!/$%!/*+0!+9(6,!-$0($&!8%,<(60($&J!
Supervised Learning. ^,! /$%-49*0,!*! 8*%*-,0,%'/%,,!
9$++!/4&60($&!0$!/*6(9(0*0,!0%*(&(&.!3(01!0%4,!+9(6,!-$0($&!
/$%!+9(6,!-$0($&!8%,<(60($&!3(01!+42')$:,9!*664%*67J!
Artifact-Free Reconstruction.!^,! $20*(&!*%0(/*60'/%,,!
F?!%,6$&+0%460($&+!27!+89*00(&.!+9(6,!<*0*!*&<!(-840(&.!
-(++(&.!(&0,&+(0(,+!)(*!+48,%)(+,<!(&0,%8$9*0($&J!
2. Related Work
! C&!/,0*9!(-*.(&.G!+9(6,'0$')$94-,!%,6$&+0%460($&!=HIB@!(+!
*&!(-8$%0*&0!(&),%+,!8%$29,-!3(01!%,6$&+0%460($&!-,01$<+!
%*&.(&.!/%$-!0%*<(0($&*9!$80(-(X*0($&'2*+,<!$&,+!N"VO"TP!0$!
%,6,&0!9,*%&(&.'2*+,<!$&,+!N>VO>YPG!31(61!3,!&$3!%,)(,3J!
2.1. Optimization Approaches
! _80(-(X*0($&'2*+,<!HIB!N"VO"WP!0%*6,+!(0+!3*7!2*6E!0$!
01,!+,-(&*9!3$%E!$/!B$4++,*4!,0!*9J!N"TPG!31$!8%,<(60,<!01,!
4&<,%97(&.!F?!ABC!)$94-,!27!*90,%&*0(&.97!,+0(-*0(&.!01,!
+9(6,!-$0($&!*&<!)$94-,!/%$-!01%,,!$%01$.$&*9!+9(6,!+0*6E+!
*&<!+48,%'%,+$9)(&.!01,!a&*9!8%,<(60,<!)$94-,J!M,!-,01$<!
$/!b(*&.!,0!*9J!N"VP!(+!69$+,97!%,9*0,<!0$!N"TP!240!*<$80+!*!.%(<!
+,*%61!0$!,+0(-*0,!01,!+9(6,!-$0($&!8*%*-,0,%+!0$!$),%6$-,!
01,!&$&'6$&),:(0(,+!$/!01,!$80(-(X*0($&!8%$29,-J!c1$9(8$4%!
,0!*9J!N""P!*&<!d4E9(+$)*'A4%.*+$)*!,0!*9J!N"FP!*00%(240,!01,!
6*4+,!$/!8$$%!%,6$&+0%460($&+!0$!(&*664%*0,!+9(6,!*9(.&-,&0+!
*&<!8%$8$+,!%,6$&+0%460($&!+0%*0,.(,+!0$!6$-2*0!-(+*9(.&,<!
+9(6,+!8$+0'1$6J!K4+!,0!*9J!N"WP!,:0,&<!N"FP!0$!*66$--$<*0,!
<,/$%-*29,!-$0($&!-$<,9+!*+!3$49<!2,!%,D4(%,<G!,J.JG!(&!01,!
%,6$&+0%460($&!$/!01,!89*6,&0*J!^1(9,!01,!/$64+!$/!$4%!3$%E!
(+!$&!2%*(&!%,6$&+0%460($&G!$4%!+48,%)(+,<!9,*%&(&.!*88%$*61!
+(-(9*%97!*66$--$<*0,+!<(e,%,&0!-$0($&!-$<,9+!=%(.(<!*&<!
<,/$%-*29,@!27!,&6$<(&.!%,.49*%(07!$/!-$0($&!<(%,6097!(&0$!
01,!0%*(&(&.!-$0($&!a,9<+!3(01$40!*<<(0($&*9!%,.49*%(X*0($&J!!
! H,),%*9!HIB!*88%$*61,+!,:0,&<!N"TP!27!%,8*%*-,0%(X(&.!
+9(6,!-$0($&!/$%!*!-$%,!/*)$%*29,!6$-840*0($&*9!6$-89,:(07!
$%!f,:(2(9(07!$/!01,!+9(6,!-$0($&J!d(-!,0!*9J!N">P!8%$8$+,!0$!
9$3,%!01,!6$+0!$/!-$0($&!,+0(-*0($&!27!*9(.&(&.!"?!9(&,+!$/!
(&0,%+,60($&!2,03,,&!>?!+9(6,+J!U9*&+*%7!,0!*9J!N"YP!8%$8$+,!
0$!1*&<9,!<,/$%-*29,!+9(6,!-$0($&!27!8*%0(0($&(&.!+9(6,+!(&0$!
+D4*%,!8*061,+!*&<!,+0(-*0(&.!*!+,8*%*0,!+,0!$/!%(.(<!-$0($&!
8*%*-,0,%+!/$%!,*61!8*061J!Z$3,),%G!01(+!+0%*0,.7!8%$<46,+!
*!8*061'3(+,!9(&,*%!*88%$:(-*0($&!$/!01,!4&<,%97(&.!-$0($&!
*&<!9,*<+!0$!29$6E!*%0(/*60+!(&!01,!%,6$&+0%460,<!)$94-,J!C&!
$4%!3$%EG!3,!%,8%,+,&0!+9(6,!-$0($&!*+!<,&+,!-$0($&!a,9<+!
0$!,&*29,!+0%*(.10'/$%3*%<!*%0(/*60'/%,,!F?!%,6$&+0%460($&J!
! C&!$80(-(X*0($&'2*+,<!HIB!-,01$<+G!.$$<!(&(0(*9(X*0($&!
$/!01,!F?!)$94-,!*&<!01,!+9(6,!-$0($&!6*&!1,98!-(0(.*0,!01,!
<,9,0,%($4+!,e,60+!$/!9$6*9!-(&(-*!(&!01,!$25,60(),!/4&60($&!
$&!01,!%,6$&+0%460($&J!d*(&X!,0!*9J!N"QP!8%$8$+,!0,61&(D4,+!
0$!*40$-*0(6*997!+,9,60!*!%,/,%,&6,!+9(6,!+0*6E!0$!(-8%$),!01,!
(&(0(*9(X*0($&!$/!01,!F?!)$94-,J!g$4%2(,%!,0!*9J!N"RP!(&(0(*9(X,!
01,!F?!)$94-,!3(01!*&!*.,'-*061,<!0,-89*0,!(-*.,G!31(61!
*60+!*+!8%($%!E&$39,<.,!(&!01,!%,6$&+0%460($&!/%*-,3$%EJ!]7!
6$&0%*+0G!3,!0*+E!$4%!/4997!6$&)$940($&*9!&,03$%E!-$<,9!3(01!
%$24+097!<,0,%-(&(&.!+9(6,!-$0($&!(&!01,!8%,+,&6,!$/!(-*.,!
&$&'6$&),:(0(,+G!*99$3(&.!(0!0$!<(+8,&+,!3(01!0,-89*0,+!*&<!
8%$<46,!+425,60'!*&<!8*01$9$.7'+8,6(a6!%,6$&+0%460($&+J!
2.2. Learning-Based Approaches
! [4%%,&097G!01,! -*5$%(07!$/! -*61(&,'9,*%&(&.'2*+,<! HIB!
-,01$<+!N>VO>YP!8%,<(60!01,!8$+(0($&!8*%*-,0,%+!$/!+9(6,+!=T!
Figure 2: Supervised learning. We train our splatslice U-Net (a) on paired (slice stack, motion stack) examples, which are generated by
slicing 3D volumes with randomized slice-wise motion (motion stack). We additionally train a fully convolutional interpolation network (b)
on paired (splat volume, 3D volume) examples, where splat volumes are generated by splatting slice stacks with ground truth motion.
!
!
(a) Single-Stack Motion Estimation (b) Supervised Interpolation
!
Slice Stack
Splat Volume
𝐲
Interpolator
𝐱
!
𝐲
𝐱
3D Volume
Slice Stack
Motion Stack
SplatSlice
U-Net
Slice
Splat
!
F!
&4-2,%+@!3(01(&!01,!4&<,%97(&.!ABC!)$94-,!27!4+(&.!*!>?!
6$&)$940($&*9!&,4%*9!&,03$%E!=[\\@J!M,!8%,<(60,<!8$+(0($&!
8*%*-,0,%+!*%,!01,&!4+,<!0$!3*%8!01,!+9(6,+!*&<!%,6$),%!01,!
4&<,%97(&.!ABC!)$94-,J!M,![\\!-$<,9!$/!Z$4!,0!*9J!N>VP!
6$&+(+0+!$/!01,!6$&)$940($&*9!9*7,%+!$/!Icc'"R!8%,'0%*(&,<!
$&!C-*.,\,0!NQQP!*&<!*!<,&+,!6$&&,60,<!1,*<!0$!8%,<(60!01,!
*&61$%!8$(&0+!=Uh@!$/!01,!(&<()(<4*9!+9(6,+J!i, 4& .!,0!*9 J!N>QP!
,:0,&<!N>VP!*&<!8%,<(60!01,!8$+(0($&!8*%*-,0,%+!$/!*99!+9(6,+!
5$(&097G!(&0%$<46(&.!*&!(&0,%'+9(6,!*00,&0($&!9*7,%!2,03,,&!01,!
,:0%*60,<!/,*04%,+!*&<!01,!$40840!0$!6$&<(0($&*997!8%,<(60!01,!
-$0($&!/$%!,*61!+9(6,!.(),&!01,!/,*04%,+!$/!$01,%!+9(6,+J!
! A$%,!%,6,&097G! *!&$&'6$&)$940($&*9!-$<,9!/$%!HIB!3*+!
8%$8$+,<!27!j4!,0!*9J!N>YP!(&!*&!4&+48,%)(+,<!+,00(&.!4+(&.!
*!)(+($&!0%*&+/$%-,%!-$<,9!NQYOQSPJ!U901$4.1!01(+!8%$<46,+!
8%$-(+(&.!%,+490+G!(0!+6*9,+!D4*<%*0(6*997!3(01!01,!&4-2,%!$/!
+9(6,+!<4,!0$!(&0,%'+9(6,!*00,&0($&!6$-840*0($&+!*&<!%,D4(%,+!
178,%8*%*-,0,%!04&(&.!0$!2*9*&6,!<(e,%,&0!0,%-+!(&!01,!9$++!
/4&60($&J!]7!8$+(&.!01,!HIB!0*+E!*+!*!+48,%)(+,<!%,.(+0%*0($&!
8%$29,-!3(01(&!*!6$&)$940($&*9!/%*-,3$%EG!3,!+(.&(a6*&097!
9,++,&!01,!6$-89,:(07!$/!-$<,9(&.!8*(%3(+,!+9(6,!(&0,%*60($&!
01%$4.1!6$&)$940($&*9!3,(.10!+1*%(&.!*&<!$2)(*0,!01,!&,,<!
/$%!178,%8*%*-,0,%!$80(-(X*0($&!(&!01,!9$++!/4&60($&J!
! M,!8%$29,-!$/!%,.%,++(&.!+9(6,!8$+(0($&!=$%!,),&!-$0($&@!
*.*(&+0!(&0,&+(07!<*0*!(+!1(.197!&$&'6$&),:!<4,!0$!01,!(-*.,!
9*&<+6*8,!N"TPJ!^1(9,!01,%,!1*),!2,,&!,e$%0+!0$!$),%6$-,!
(-*.,!&$&'6$&),:(0(,+!(&!9,*%&(&.'2*+,<!(-*.,!%,.(+0%*0($&!
NF"G!F>PG!01,+,!6$&6,%&+!*%,!&$0!*<<%,++,<!(&!9,*%&(&.'2*+,<!
8$+,!8%,<(60($&!3$%E+!N>QG!>YP!*&<!*%,!,:*6,%2*0,<!/4%01,%!
27!+,8*%*0,!8%$6,++(&.!$/!01,!(&<()(<4*9!+9(6,+!N>VPJ!h$+(&.!
HIB!*+!(-*.,!%,.(+0%*0($&!*99$3+!4+!0$!*88,*9!0$!,J.J!NF"G!F>P!
0$!*<<%,++!01,!/4&<*-,&0*997!&$&'6$&),:!&*04%,!$/!HIBJ!
2.3. Pre- and Post-Processing
! HIB!0,61&(D4,+!078(6*997!(&)$9),!+9(6,!8%,'8%$6,++(&.!*+!
*!a%+0!+0,8!0$!%,5,60!+9(6,+!,:1(2(0(&.!6$&+(<,%*29,!(&0%*'+9(6,!
-$0($&!*&<!+,.-,&0!%,9,)*&0G!,J.JG!01,!2%*(&G!+0%4604%,+!/%$-!
01,!+6*&J!U&D4,X!,0!*9J!NQWP!8%$8$+,!*!-,01$<!0$!+E499'+0%(8!
/,0*9!)$94-,+G!31(61!6*&!2,!4+,<!*9+$!0$!-*+E!$40!&$&'2%*(&!
+0%4604%,+!(&!AB!+9(6,+!/$%!+-*99!(&0,%'+9(6,!-$0($&J!g$4%2(,%!
,0!*9J!N"RP!8%$8$+,!0$!9$6*9(X,!2%*(&!%,.($&+!(&!AB!+9(6,+!27!
29$6E'-*061(&.!*&!*.,'-*061,<!0,-89*0,!0$!01,!+9(6,+!01,&!
%,.(+0,%(&.!01,!-*061,<!%,.($&+!2*6E!0$!01,!0,-89*0,J!d*(&X!
,0!*9J!NQTP!9$6*9(X,!2%*(&!%,.($&+!2*+,<!$&!%$0*0($&'(&)*%(*&0!
<,+6%(80$%+!/$%!9*2,9(&.!2%*(&J!d,%*4<%,&!,0!*9J!NYVG!Y"P!4+,!*!
<,&+,!HC#g!*&<!%*&<$-!/$%,+0!69*++(a6*0($&!/$%!)$:,9'9,),9!
+,.-,&0*0($&J!H$-,!+1$%06$-(&.+!$/!01,+,!-,01$<+!(&694<,!
1(.1!6$-840*0($&*9!6$-89,:(07!N"RG!QWP!*+!3,99!*+!01,!&,,<!
0$!1*&<6%*/0!/,*04%,+!NYVG!Y"P!/$%!+,.-,&0*0($&J!!
! k,*%&(&.'2*+,<!*88%$*61,+!0$!/,0*9!+,.-,&0*0($&!(&694<,!
01,!-,01$<+!$/!B*5619!,0!*9J!NY>P!*&<!H*9,1(!,0!*9J!NYFPG!2$01!
$/!31(61!4+,!#[\!-$<,9+!NYQP!0$!8%,<(60!/$%,.%$4&<!-*+E+!
<(%,6097!$&!+9(6,+J!#$%!8$+0'8%$6,++(&.!$/!01,!%,6$&+0%460,<!
F?!)$94-,G!j4!,0!*9J!NYYP!8%$8$+,!&,4%*9!)$94-,!%,&<,%(&.!
+(-(9*%!0$!\,B#!NYRP!0$!+48,%'%,+$9),!%,6$&+0%460($&+!*0!*&!
*%2(0%*%7! %,+$940($&J! C&! 01(+! 3$%EG! 3,! *<<(0($&*997! 0%*(&! *&!
(&0,%8$9*0($&!&,03$%E!0$!8$+08%$6,++!01,!%*3!%,6$&+0%460($&+!
*&<!(&0,%8$9*0,!$),%!%,.($&+!$/!-(++(&.!(&0,&+(0(,+!01*0!-*7!
*88,*%!(&!01,!+(&.9,'+0*6E!%,6$&+0%460($&!6*+,G!8%$<46(&.!*&!
*%0(/*60'/%,,!%,6$&+0%460($&!/$%!$01,%!<$3&+0%,*-!0*+E+J!
3. Mathematical Preliminaries
3.1. Slice Acquisition Model
! C&!1(.1'%,+$940($&!F?!ABC!$/!+425,60+!,:1(2(0(&.!+,),%,!
4&6$&0%$99*29,!-$0($&G!/*+0!+9(6,!*6D4(+(0($&!+,D4,&6,+!+461!
*+!+(&.9,!+1$0!/*+0!+8(&!,61$!*%,!4+,<!0$!l/%,,X,m!01,!-$0($&!
(&'89*&,G!+42+0*&0(*997!-(0(.*0(&.!-$0($&!*%0(/*60+!6$-8*%,<!
0$!-490('+1$0!-,01$<+!NYSPJ!HIB!8%$6,<4%,+!*(-!0$!*9(.&!*&!
*6D4(%,<!+0*6E!$/!+9(6,+!01,%,27!%,-$)(&.!01,!%,-*(&(&.!=(&'
89*&,!*&<!01%$4.1'89*&,@!-$0($&!*6%$++!+9(6,+J!
! k,0!4+!<,&$0,!01,!6$$%<(&*0,+!(&+(<,!01,!ABC!+6*&&,%!27!
(𝑥, 𝑦, 𝑧)!*&<!*++4-,!*!+0*6E!𝑓!$/!>?!+9(6,+!(+!*6D4(%,<!*9$&.!
01,!𝑧!*:(+!3(01!+8*6(&.!𝑠!/%$-!*&!4&<,%97(&.!)$94-,!𝑣J!M,!
-$<,9!/$%!01,!*6D4(+(0($&!$/!01,!𝑘 01!AB!+9(6,!(+!N""G!"TP`!
!
𝑓
𝑘
(𝑥, 𝑦) = 𝜀 + (𝑣 𝑢
𝑘
)(𝑥, 𝑦, 𝑧)(𝑠𝑘 𝑧) d𝑧
−∞
!!
="@!
/$%!𝑘 = 1, . . . , 𝐾G! 31,%,!𝑢
𝑘
: (𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧)
!<,&$0,+!
*&!4&$2+,%),<!+9(6,')*%7(&.!%(.(<!+8*0(*9!+425,60!-$0($&G!!
<,&$0,+!01,!8$(&0!+8%,*<!/4&60($&!$/!+9(6,!*6D4(+(0($&G!*&<!𝜀!
6*804%,+!*99!AB'(&<46,<!,%%$%+!+461!*+!&$(+,G!2(*+G!,06J!
! g$!<(+6%,0(X,!-$<,9!="@G!+488$+,!𝑣!(+!+*-89,<!$&!*!642(6!
9*00(6,!$/!𝑁
3
!8$(&0+!*&<!𝑓
𝑘
!$&!*!>?!9*00(6,!$/!𝑁
2
!8$(&0+J!^,!
6*&!3%(0,!01,!<(+6%,0(X,<!-$<,9!=48!0$!%*&<$-!&$(+,@!*+!
!
𝐟 =
[
𝐟
1
; . . . ; 𝐟
𝐾
]
𝑁
2
𝐾
, 𝐟
𝑘
= 𝐇
𝑘
𝐔
𝑘
𝐯
𝑁
2
,!
=>@!
(&!31(61!𝐔
𝑘
!*&<!𝐇
𝑘
!%,8%,+,&0!<(+6%,0(X*0($&+!$/!( 𝑢
𝑘
)!*&<!
(𝑠𝑘 )G!%,+8,60(),97J!C&!01,!+-*99!-$0($&!%,.(-,G!3,!6*&!
/4%01,%!*88,*9!0$!g*79$%n+!*88%$:(-*0($&!*&<!<,a&,!
!
𝐔
𝑘
𝐯 = 𝐯 +
[
𝐝𝐢𝐚𝐠(𝐯
𝑥
) , 𝐝𝐢𝐚𝐠(𝐯
𝑦
) , 𝐝𝐢𝐚𝐠(𝐯
𝑧
)
]
𝐒𝐮
𝑘
,!
=F@!
(&!31(61!𝐒𝐮
𝑘
%,8%,+,&0+!01,!,:8*&+($&!$/!01,!6$,L6(,&0+!$/!
-$0($&!𝐮
𝑘
(&!*!2*+(+!𝐒 *&<!𝐯
{𝑥,𝑦,𝑧}
!*%,!01,!%,+8,60(),!+8*0(*9!
<,%()*0(),+!$/!01,!F?!)$94-,J!^,!*66$--$<*0,!<,/$%-*29,!
-$0($&!-$<,9+!27!+,00(&.!𝐒!0$!01,!(<,&0(07!-*0%(:G!(&!31(61!
6*+,G!𝐮
𝑘
<,&$0,+!01,!),60$%(X*0($&!$/!*!F?!-$0($&!a,9<J!
3.2. Classical SVR Methods
! #$%! 2%,)(07G! 9,0! 4+! 3%(0,!𝐔 =
[
𝐇
1
𝐔
1
; . . . ; 𝐇
𝐾
𝐔
𝐾
]
!*&<!
01,!*++$6(*0,<!-$0($&!8*%*-,0,%+!*+!𝐮 =
[
𝐮
1
; . . . ; 𝐮
𝐾
]
J!^,!
6*&!3%(0,!01,!HIB!8%$29,-!3(01!01%,,!$%01$.$&*9!+0*6E+!*+!
!
minimize 𝐷(𝐮
{1,2,3}
, 𝐯
{1,2,3}
) =
𝐔
1
𝐯
1
𝐟
1
2
2
!
+
𝐔
2
𝐯
2
𝐟
2
2
2
+
𝐔
3
𝐯
3
𝐟
3
2
2
!
subject to 𝐯
1
𝐯
2
= 𝐯
2
𝐯
3
= 𝐯
3
𝐯
1
=  𝟎!
=Q@!
(&!31(61!𝐮
{1,2,3}
<,&$0,!01,!8*%*-,0,%+!$/!-$0($&!(&!,*61!$/!!
01,!+0*6E+J![$&0%*+0'(&)*%(*&0!9$++!/4&60($&+!+461!*+!-404*9!
!
Q!
(&/$%-*0($&!9$++!NYWP!*%,!*9+$!8$849*%97!4+,<!(&!89*6,!$/!01,!
D4*<%*0(6!$&,!+1$3&!1,%,!/$%!+(-89(6(07J!Z,%,G!3,!(&0%$<46,!
$80(-(X*0($&! )*%(*29,+!𝐯
{1,2,3}
!3(01! ,D4*9(07! 6$&+0%*(&0+! *+!
$88$+,<!0$!*!+(&.9,!)*%(*29,!𝐯!0$!/*6(9(0*0,!+$9)(&.!=Q@!4+(&.!
*90,%&*0(&.!$80(-(X*0($&!+0%*0,.(,+!+(-(9*%97!0$!N"SG!"TPJ!
! U!+(-89,!*90,%&*0(&.!$80(-(X*0($&!+0%*0,.7!31(61!<$,+!&$0!
(&0%$<46,!<4*9!)*%(*29,+!(+!0$!%,9*:!01,!,D4*9(07!6$&+0%*(&0+!0$!
01,!D4*<%*0(6!8,&*907!
!
𝑅
(
𝐯
{
1,2,3
}
)
=
[
𝐯
1
, 𝐯
2
, 𝐯
3
]
[
𝐯
2
, 𝐯
3
, 𝐯
1
]
2
2
!
=Y@!
*&<!$80(-(X,!01,!%,9*:*0($&!
!
𝐽() = 𝐷(𝐮
{1,2,3}
, 𝐯
{1,2,3}
) + 𝜆𝑅(𝐯
{1,2,3}
),!
=R@!
(&!31(61!𝜆!(+!*!8*%*-,0,%!6$&0%$99(&.!01,!%,9*0(),!3,(.10+!$/!
01,!<*0*!a<,9(07!0,%-!𝐷!*&<!01,!6$489(&.!0,%-!𝑅J!_25,60(),!
=R@!(&!/*60!6$%%,+8$&<+!0$!01,!$25,60(),!(-89(6(097!$80(-(X,<!
27!B$4++,*4!,0!*9J!N"TP!31,&!01,!-404*9!(&/$%-*0($&!9$++!(+!
4+,<!(&!01,!<*0*!a<,9(07!0,%-!𝐷J!_80(-(X(&.!=R@!4+(&.!29$6E!
6$$%<(&*0,!<,+6,&0!7(,9<+!48<*0,+!/$%!𝐯
1
, 𝐮
1
, 𝐯
2
, 𝐮
2
, 𝐯
3
!*&<!
𝐮
3
G!31,%,!01,!F?!%,6$&+0%460($&+!=𝑣'48<*0,@!*&<!01,!-$0($&!
8*%*-,0,%+!=𝑢'48<*0,@!$/!,*61!+0*6E!*%,!48<*0,<!(&!04%&!3(01!
01,!$01,%!03$!%,6$&+0%460($&+!a:,<!*0!,*61!04%&J!
! C&!01,!𝑛01!(0,%*0($&!$/!01,!29$6E!6$$%<(&*0,!<,+6,&0G!01,!𝑣'
48<*0,!+0,8!/$%!*!.(),&!+0*6E!*-$4&0+!0$!6$-840(&.!
!
𝐯
𝑛
(𝐔
𝑛∗
𝐔
𝑛
+ 2𝜆𝐈)
−1
(𝐔
𝑛∗
𝐟
𝑛
+ 2𝜆𝐯
𝑛
),!
=S
@
!
(&!31(61!𝐯
𝑛
!*&<!𝐟
𝑛
<,&$0,!01,!%,6$&+0%460($&!*&<!>?!+9(6,+!
$/!01,!𝑛%3%<!+0*6EG!%,+8,60(),97G!*&<!𝐯
𝑛
<,&$0,+!01,!*),%*.,!
%,6$&+0%460($&!/%$-!01,!03$!+0*6E+!$%01$.$&*9!0$!𝐯
𝑛
J!^,!6*&!
(&0,%8%,0!01(+!48<*0,!*+!*!%,6$&+0%460($&!$/!*!&,3!F?!)$94-,!
/%$-!*!3,(.10,<!+4-!$/!01,!9*+0!*),%*.,!F?!%,6$&+0%460($&!
*&<!3*%8,<!+9(6,+G!/$99$3,<!27!^(,&,%'<,6$&)$940($&J!M(+!
(&0,%8%,0*0($&!$/!01,!𝑣'48<*0,!3(99!.4(<,!$4%!6$&+0%460($&!$/!
*!/4997!6$&)$940($&*9!&,03$%E!9*0,%!(&!H,6!FJFJ!!
! U9.,2%*(6*997G!(𝐔, 𝐔
) <,a&,!*&!*<5$(&0!8*(%!$/!3*%8(&.!
$8,%*0$%+G!31(61!3,!3(99!%,/,%!0$!*+!l+9(6(&.m!*&<!l+89*00(&.m!
%,+8,60(),97!NYTPJ!C&!01,!6*+,!31,%,!01,%,!(+!(&5,60(),!-$0($&!
%,9*0(&.!*!+9(6,!+0*6E!𝐟
𝑛
!0$!*!F?!)$94-,!𝐯G!3,!6*&!$20*(&!𝐟
𝑛
27!l+9(6(&.m!𝐯 3(01!𝐔
𝑛
!*&<!$20*(&!𝐯 27!l+89*00(&.m!𝐟
𝑛
!3(01!
𝐔
𝑛∗
J!#(.4%,!F!(994+0%*0,+!01,!03$!*<5$(&0!3*%8(&.!$8,%*0$%+!
(&!01,!<(+6%,0,!6*+,!31,&!-490('9(&,*%!(&0,%8$9*0($&!3,(.10+!
*%,!4+,<!/$%!/%*60($&*9!+9(6(&.!*&<!+89*00(&.J!
! M,!𝑢'48<*0,!/$%!01,!-$0($&!$/!01,!𝑘01!+9(6,!(&!*!+0*6E!(+!
!
𝐮
𝑘
𝑛
(𝐒
𝐕
𝑘
𝑛∗
𝐕
𝑘
𝑛
𝐒)
−1
𝐒
𝐕
𝑘
𝑛∗
(𝐇
𝑘
𝐯
𝑛
𝐟
𝑘
𝑛
),!
=W@!
(&!31(61!𝐕
𝑘
𝑛
= 𝐇
𝑘
[
𝐝𝐢𝐚𝐠(𝐯
𝑥
𝑛
) , 𝐝𝐢𝐚𝐠(𝐯
𝑦
𝑛
) , 𝐝𝐢𝐚𝐠(𝐯
𝑧
𝑛
)
]
G 3(01!
01,!𝐯
{𝑥,𝑦,𝑧}
𝑛
<,&$0(&.!01,!%,+8,60(),!+8*0(*9!<,%()*0(),+!$/!01,!
.(),&!F?!)$94-,!%,6$&+0%460,<!(&!01,!(𝑛 1)01!(0,%*0($&J!
! C&!8%*60(6,G!+425,60!-$0($&!(&!*&!AB!+9(6,!9(E,97!,:6,,<+!
$&,!)$:,9!(&!-*.&(04<,!240!01,!9(&,*%!-$<,9!$/!3*%8(&.!=F@!
+0*7+!)*9(<!$&97!(/!01,!+9(6,!(+!a%+0!294%%,<!*0!01,!+6*9,!$/!01,!
-$0($&J!?4,!0$!01(+G!-$0($&!(+!$/0,&!,+0(-*0,<!$&!*!87%*-(<!
(&!*!6$*%+,'0$'a&,!-*&&,%G!4+(&.!01,!-$0($&!a,9<!,+0(-*0,<!
*0!6$*%+,%!9,),9+!0$!(&(0(*9(X,!-$0($&!*0!a&,%!$&,+!NRVPJ!ABC!
*6D4(+(0($&+!*9+$!+4e,%!/%$-!*!2(*+!a,9<!<4,!0$!&$&'4&(/$%-!
-*(&!-*.&,0(6!a,9<!*&<!%*<($/%,D4,&67!6$(9+G!(&0%$<46(&.!*!
.9$2*9!(&0,&+(07!+1(/0!2,03,,&!01,!4&E&$3&!)$94-,!*&<!01,!
+9(6,+J!U!E,7!61*99,&.,!(&!$80(-(X*0($&'2*+,<!HIB!-,01$<+!
(+!<,0,%-(&(&.G!*0!,*61!+6*9,G!-$0($&!(&!01,!8%,+,&6,!$/!2(*+!
*&<!,:0%,-,!+9(6,!*%0(/*60+J!A(+0*E(&.!,(01,%!/$%!-$0($&!6*&!
D4(6E97!9,*<!0$!8(0/*99+!$/!9$6*9!-(&(-*!(&!01,!$80(-(X*0($&!
$25,60(),!,+8,6(*997!*0!6$*%+,!+6*9,+J!Z$3,),%G!(0!(+!<(L6490!
0$!1*&<'6%*/0!*!%,6$&+0%460($&!8(8,9(&,!31(61!6*&!$),%6$-,!
(-*.,!&$&'6$&),:(0(,+!<4,!0$!+1,,%!&4-2,%+!$/!*6D4(+(0($&'
+8,6(a6!<,+(.&!61$(6,+!0$!2,!-*<,!=,J.JG!&$&'9(&,*%!a90,%+@J!
4. Fully Convolutional SVR
! K+(&.!*!#[\!-$<,9!/$%!HIB!,&*29,+!4+!0$!278*++!1*&<'
6%*/0,<!*6D4(+(0($&'+8,6(a6!%,6$&+0%460($&!8(8,9(&,+!*+!3,99!
*+!&4-,%(6*9!$80(-(X*0($&J!B*01,%!01*&!/$%-49*0(&.!HIB!*+!
01,!8%,<(60($&!$/!*2+$940,!+9(6,!6$$%<(&*0,+!(&!F?!+8*6,!*+!(+!
078(6*997!<$&,!(&!$01,%!9,*%&(&.'2*+,<!-,01$<+!N>WOF>PG!3,!
6*+0!HIB!*+!01,!%,.(+0%*0($&!$/!+$-,!4&$2+,%),<!F?!)$94-,!
0$!*&!$2+,%),<!+0*6E!$/!>?!+9(6,+J!^,!0%*(&!*!#[\!-$<,9!0$!
8%,<(60!-$0($&!%,9*0(&.!01,!+9(6,+!0$!*!F?!)$94-,!.(),&!$&97!
01,!+9(6,+!*+!(&840G!8%$<46(&.!*!F?!)$94-,!*+!*!27'8%$<460!
$/!%,.(+0%*0($&J![$&6,804*997G!01(+!(+!+(-(9*%!0$!01,!8%$29,-!
$/!-$&$649*%!<,801!,+0(-*0($&!NQVOQFPG!31,%,!$&,n+!.$*9!(+!
0$!8%,<(60!<(+8*%(07!=-$0($&!*9$&.!01,!,8(8$9*%!9(&,@!%,9*0(&.!
*!+(&.9,!>?!(-*.,!0$!01,!<,801!$/!01,!4&<,%97(&.!F?!+6,&,J!
4.1. Neural Network Architecture
! [\\!*%61(0,604%,+!+461!*+!01$+,!4+,<!(&!+,-*&0(6!(-*.,!
+,.-,&0*0($&!6*&!8%$<46,!+42$80(-*9!$406$-,+!/$%!-$0($&!
,+0(-*0($&!0*+E+!(/!01,!-$0($&!(+!9*%.,!$%!(-*.,+!,:1(2(0!a&,!
0,:04%,!NFFOFTPJ!^1(9,!/4997!6$&)$940($&*9!&,03$%E+!+461!*+!
01,!K'\,0!NYQP!*%,!,&<$3,<!3(01!*!-490('+6*9,!*%61(0,604%,!
*&<!6$49<! 01,$%,0(6*997!,+0(-*0,!-$0($&!(&!*! 6$*%+,'0$'a&,!
-*&&,%G!4+(&.!6$&)$940($&!E,%&,9+!0$!8*%*-,0,%(X,!3*%8(&.!
Figure 3: Slicing and splatting. In slicing (top row), the endpoints
of motion vectors define coordinate locations in a moving image to
pull data from and construct an image. In splatting (bottom), the
same motion vector endpoints define coordinate locations in a fixed
image to push data to. Multi-linear weights are used for fractional
splatting and slicing, guaranteeing differentiability w.r.t grid data.
Moving Image Motion Field Slicing Sliced Image
¼
½
¾
0
0
1
/
0
¼
s
¼
¼
¼
½
¼
¾
¼
¼
s
¼
¼
¼
¼
¼
¼
½
¼
¼
¾
1¼
1½
¼
¼
Fixed Image Motion Field Splatting Splat Image
Slice (Warp)
Splat (Warp
T
)
!
Y!
=+8*6,')*%7(&.!0%*&+/$%-+@!(+!(&1,%,&097!(&,L6(,&0G!2$01!(&!
0,%-+!$/!8*%*-,0%(X*0($&!*&<!6$-840*0($&o!+,,G!,J.JG!NFFG!FTPJ!
! _4%!&,03$%E!-$<,9!=#(.4%,!Q@!2,*%+!+(-(9*%(0(,+!0$!01$+,!
4+,<!(&!8*(%3(+,!(-*.,!%,.(+0%*0($&!N>WOF>PG!31(61!8%,<(60!
(-*.,!-$0($&!27!8%$6,++(&.!01,!(-*.,!8*(%!*6%$++!-490(89,!
9,),9+!$/!6$&)$940($&+J!M,+,!&,03$%E!-$<,9+!*%,!078(6*997!
,D4(88,<!3(01!3*%8(&.!9*7,%+!2,03,,&!*<5*6,&0!9,),9+!+461!
01*0!$&97!01,!%,+(<4*9!-$0($&!&,,<+!0$!2,!,+0(-*0,<!*0!,),%7!
9,),9J!\$0($&*997G!01,!+9(6,!+0*6E!*++4-,+!01,!%$9,!$/!*!a:,<!
(-*.,!31(9,!01,!F?!)$94-,G!31(61!3,!+,,E!0$!,+0(-*0,G!6*&!
2,!+,,&!*+!*!-$)(&.!(-*.,J!U+!<(+64++,<!(&!H,6J!FJ>G!3,!6*&!
$20*(&!01,!/,*04%,+!$/!01,!>?!+9(6,+!=a:,<!(-*.,@!27!+9(6(&.!
01,!/,*04%,+!$/!01,!F?!)$94-,!3(01!01,!,+0(-*0,<!-$0($&J!g$!
$20*(&!01,!/,*04%,+!$/!01,!F?!)$94-,G!3,!+89*0!01,!/,*04%,+!
$/!01,!+9(6,!+0*6E!4+(&.!01,!+*-,!-$0($&!,+0(-*0,J!
! \$0,!01*0!(&!$4%!6*+,G!$&97!01,!a:,<!(-*.,!=+9(6,!+0*6E@!(+!
.(),&G!+$!01,!<$3&3*%<!0%*&+/$%-!&,,<+!0$!8%$6,++!$&97!01,!
a:,<!(-*.,J!M,!483*%<!0%*&+/$%-!+7&01,+(X,+!a:,<!(-*.,!
/,*04%,+!27!4&8$$9(&.!9$3,%'%,+$940($&!$&,+G!6$&6*0,&*0(&.!
01,-!3(01!01,!+E(8!/,*04%,+!*&<!8%$6,++(&.!01,-!)(*!*!+,%(,+!
$/!6$&)$940($&+J!M,!-$)(&.!(-*.,!=$%!F?!)$94-,@!/,*04%,+!
*%,!+7&01,+(X,<!(&!8*%*99,9!27!4&8$$9(&.!01,(%!9$3'%,+$940($&!
6$4&0,%8*%0+G!6$&6*0,&*0(&.!01,-!3(01!01,!+89*00(&.+!$/!+E(8!
/,*04%,+!*&<!8%$6,++(&.!01,-!)(*!6$&)$940($&+J!M,!-$)(&.!
(-*.,!/,*04%,+!*%,!a&*997!+9(6,<G!6$&6*0,&*0,<!3(01!01,!a:,<!
(-*.,!/,*04%,+!*&<!8%$6,++,<!4+(&.!*!+,%(,+!$/!6$&)$940($&+!
0$!$40840!%,+(<4*9!+9(6,!-$0($&G!31(61!(+!*<<,<!0$!01,!9$3,%'
%,+$940($&!-$0($&!01*0!3*+!4+,<!<4%(&.!+89*00(&.!*&<!+9(6(&.J!
! C&!0,%-+!$/!(-89,-,&0*0($&G!2$01!01,!+9(6,!+0*6E!*&<!01,!
F?!)$94-,!/,*04%,+!*%,!+,,&!*+!=]G[G?GZG^@!0,&+$%+G!31,%,!
01,!?!<(-,&+($&!*60+!*+!01,!+9(6(&.!<(-,&+($&!(&!01,!6*+,!$/!
+9(6,!+0*6E!/,*04%,+J!F?!)$94-,!/,*04%,+!*%,!8%$6,++,<!4+(&.!
6$&)$940($&!*&<!8$$9(&.!E,%&,9+!$/!+1*8,!=FGFGF@!*&<!=>G>G>@!
%,+8,60(),97G!31(9,!+9(6,!/,*04%,+!*%,!8%$6,++,<!4+(&.!E,%&,9+!
$/!+1*8,+!="GFGF@!*&<!="G>G>@G!%,+8,60(),97G!+$!01*0!,*61!+9(6,!
6*&!2,!8%$6,++,<!(&<,8,&<,&097J!^(01(&!01,!%,+(<4*9!-$0($&!
,:0%*60($&!+0*.,+G!01,!a%+0!6$&)$940($&+!*%,!8,%/$%-,<!3(01!
E,%&,9+!$/!+1*8,!=QGFGF@!*&<!+0%(<,+!$/!=QG"G"@!+(&6,!+9(6,+!*%,!
(&0,%&*997!%,8%,+,&0,<!*+!F?!+9*2+!3(01!01(6E&,++!$/!Q!)$:,9+!
*&<!01,!-$0($&!&,,<+!0$!2,!%,.49*%(X,<!*6%$++!,*61!+9*2J!^,!
1*&<9,!<(e,%,&0!+9(6,!+8*6(&.+!(&!%,*9!<*0*!27!+6*9(&.!01,!>?!
(&840!+9(6,+!0$!*!Q`"!+9*2!01(6E&,++!0$!)$:,9!+8*6(&.!%*0($J!!
4.2. Rigid Motion-Compensating Loss
! C&,:*60!8$+(0($&(&.!$/!+425,60+!(&!ABC!+6*&&,%+!078(6*997!
(&0%$<46,+!*!.9$2*9!+425,60!$e+,0!=%$0*0($&+!*&<!0%*&+9*0($&+@!
(&!01,!*6D4(%,<!+9(6,+J!#$%!%,6$&+0%460($&G!1$3,),%G!3,!&,,<!
$&97!%,6$),%!01,!-$0($&!$/!01,!+9(6,+!%,9*0(),97!0$!,*61!$01,%!
(.&$%(&.!.9$2*9!+1(/0+J!g$!,&+4%,!01*0!3,!8,&*9(X,!8%,<(60($&!
,%%$%+!$&97!(&!01,!%,9*0(),!+9(6,!-$0($&+G!3,!6$-8,&+*0,!/$%!
*&7!.9$2*9!%(.(<!-$0($&!+1(/0!01*0!-*7!,:(+0!(&!$4%!8%,<(60,<!
-$0($&!+0*6E!2,/$%,!6$-840(&.!01,!0%*(&(&.!9$++!*.*(&+0!01,!
8%,<(60($&!0*%.,0J!U++4-(&.!*&!AHp!0%*(&(&.!$25,60(),G!3,!
6*&!,:8%,++!$4%!-$0($&'6$-8,&+*0(&.!0%*(&(&.!9$++!2,03,,&!
01,!8%,<(60,<!𝐮!*&<!.%$4&<!0%401!𝐲
𝑁×3
-$0($&!a,9<+!*+!
!
𝓛
(
𝐮, 𝐲
)
= min
[
𝐑,𝐭
]
𝐮 + 𝐩
(
𝐲 + 𝐩
)
𝐑 𝐭
𝐹
2
,
!
=T
@
!
(&!31(61!𝐑!%,8%,+,&0+!*!3 × 3!%$0*0($&!-*0%(:G!𝐭!%,8%,+,&0+!*!
1 × 3!0%*&+9*0($&!),60$%G!*&<!𝐩
𝑁×3
(+!*!-*0%(:!$/!)$:,9!
6$$%<(&*0,+J!C&!3$%<+G!01(+!9$++!a%+0!8,%/$%-+!*!.9$2*9!%(.(<!
*9(.&-,&0!2,03,,&!01,!8$(&0!69$4<+!𝐮 + 𝐩 *&<!𝐲 + 𝐩G!+461!
01*0!$&97!01,!&$&'%(.(<!-$0($&!6$-8$&,&0!2,03,,&!01,!03$!
8$(&0!69$4<+!(+!8,&*9(X,<J!k$++!𝓛!%,<46,+!0$!01,!4+4*9!AHp!
9$++!(&!01,!*2+,&6,!$/!.9$2*9!%$0*0($&!𝐑!*&<!0%*&+9*0($&!𝐭J!
! g$!+$9),!01,!$80(-(X*0($&!8%$29,-!=T@G!3,!a%+0!-(&(-(X,!
01,!4&6$&+0%*(&,<!),%+($&!$/!8%$29,-!=T@!$),%!01,!+8*6,!$/!
*99!
[
𝐑, 𝐭
]
3×4
0$!$20*(&!*!-(&(-(X,%!
[
𝐑
, 𝐭
]
G!01,&!/*60$%!
𝐑
(&0$!(0+!%$0*0($&!*&<!+1,*%!-*0%(6,+!*+!𝐑
= 𝐑
𝐒
J!#%$-!
01,!+(&.49*%!)*94,!<,6$-8$+(0($&!𝐑
= 𝐔𝚺𝐕
G!3,!+,,!01*0!
!
𝐑
= 𝐔sign
(
𝚺
)
𝐕
, 𝐒
= 𝐕abs
(
𝚺
)
𝐕
,!
="V@!
*!/*60$%(X*0($&!E&$3&!*+!01,!8$9*%!<,6$-8$+(0($&!NR"PJ!M,!
%,+490(&.!%$0*0($&!-*0%(:!𝐑
!(+!01,!-(&(-4-!-,*&!+D4*%,<'!
,%%$%!*88%$:(-*0($&!$/!𝐑
G!*&<!6$&+,D4,&097G!01,!+$940($&!$/!
01,!$%(.(&*9!%(.(<!-$0($&'6$&+0%*(&,<!8%$29,-!=T@!(+!.(),&!27!
01,! 8*(%!
[
𝐑
, 𝐭
]
J!M,! 9$++!𝓛(𝐮, 𝐲) (+! 01,&! 2*6E8%$8*.*0,<!
*&<!01,!3,(.10+!$/!$4%!HIB!&,03$%E!-$<,9!48<*0,<J!#(.4%,!
Figure 4: SplatSlice U-Net. ?e stack of 2D slices goes through
2D feature extraction (downward path) and reconstruction (upward
path) with 2D skip features. 3D volume features are reconstructed
by splatting 2D skip features with previous motion to form 3D skip
features. At each level, the sliced 3D feature volume and the slice
feature stack are convolved jointly to extract residual slice motion.!
Splat
-
Concat
Concat
1
24
32
32
48
48
64
96
48
64
32
48
24
3
3
64
3
Splat
-
Concat
Concat
3
Å
Å
Å
2D Feat
3D Feat
Motion
Conv
Add
Å
Slice-Conv
Figure 5: Rigid motion-compensated loss. Validation MSE and
EPE (end-point error) [33] of the predicted motion shown. Our loss
(blue), which compensates for offsets in global rigid motion, trains
faster and attains higher final prediction accuracy than the MSE loss
(orange) and the loss that compensates for translations only (gray). !
Rigid-Comp
No Comp
Trans-Comp
Motion MSE (voxels)
Motion EPE (voxels)
Rigid-Comp
No Comp
Trans-Comp
Epochs
!
R!
Y!89$0+!01,!)*9(<*0($&!64%),+!/$%!$4%!&,03$%E!-$<,9!0%*(&,<!
4+(&.!-$0($&'6$-8,&+*0,<!*&<!%,.49*%!9$++,+G!+1$3(&.!01*0!
$4%!%(.(<!6$-8,&+*0(&.!9$++!(+!E,7!0$!(-8%$)(&.!8%,<(60($&J!
4.3. Interpolating Reconstructions
! C&!.,&,%*9G!*!F?!)$94-,!%,6$&+0%460,<!/%$-!*!+(&.9,!+9(6,!
+0*6E!6*&!6$&0*(&!1$9,+!(/!%,.($&+!$/!01,!4&<,%97(&.!)$94-,!
*%,!-(++,<!(&!*99!+9(6,!*6D4(+(0($&+!<4,!0$!+425,60!-$0($&J!C&!
6$-8*%(+$&!3(01!&*04%*9!(-*.,+G!AB!+6*&+!078(6*997!,:1(2(0!
*!9(-(0,<!<(),%+(07!(&!(-*.,%7!*&<!1*),!*!+0%$&.!8%($%!$&!01,!
<(+0%(240($&!$/!4&<,%97(&.!F?!)$94-,+J!M(+!54+0(a,+!01,!4+,!
$/!(&0,%8$9*0($&!0,61&(D4,+!0$!a99!1$9,+!(&!%,6$&+0%460($&+!0$!
+*0(+/7!%,.49*%(07!6$&+0%*(&0+!=,J.JG!$&!8*01$9$.7@J!^,!04%&!0$!
*!/4997!6$&)$940($&*9!(&0,%8$9*0($&!-$<,9!0%*(&,<!(&!*<)*&6,!
$&!=0%4,!%,6$&+0%460($&G!)$94-,@!8*(%+J!g%4,!%,6$&+0%460($&+!
=3(01!1$9,+@!6*&!2,!$20*(&,<!%,*<(97!*0!0%*(&!0(-,!27!3*%8(&.!
+9(6,!+0*6E+!3(01!.%$4&<!0%401!+9(6,!-$0($&J!^1(9,!01,!+,*%61!
/$%!01,!2,+0!(&0,%8$9*0($&!&,03$%E!-$<,9!(+!&$0!01,!/$64+!$/!
01(+!3$%EG!3,!a&<!01*0!*!+0*&<*%<!K'\,0!-$<,9!0%*(&,<!3(01!
0%4,!%,6$&+0%460($&+!*+!01,!0*%.,0!*&<!4+(&.!01,!-,*&!+D4*%,<!
,%%$%!9$++!8%$<46,+!.$$<!%,+490+J!#(.4%,!>!=%(.10@!+1$3+!01,!
0%*(&(&.!8%$6,<4%,!/$%!$4%!/4997!6$&)$940($&*9!(&0,%8$9*0$%J!!
5. Experimental Results
! ^,! %4&!,:0,&+(),!,:8,%(-,&0+!$&!2$01!*<490!ABC!+0*6E+!
=/$%!31(61!.%$4&<!0%401!AB!)$94-,+!*%,!*)*(9*29,@!*&<!/,0*9!
$&,+G!/$%!31(61!$&97!%,/,%,&6,!)$94-,+!*%,!.(),&J!#$%!,*61!
,:8,%(-,&0G!3,!0%*(&!*!HIB!&,03$%E!(&!*!+48,%)(+,<!/*+1($&!
$&!8*(%,<!=+9(6,!+0*6EG!-$0($&!+0*6E@!<*0*!*&<!*&!(&0,%8$9*0$%!
&,03$%E!$&!8*(%,<!=+9(6,O+89*0!)$94-,G!4&<,%97(&.!)$94-,@!
<*0*!=H,6J!QJF@J!M,!<*0*!*4.-,&0*0($&!178,%8*%*-,0,%+!*&<!
0%*(&(&.!<,0*(9+!*%,!.(),&!(&!U88,&<(:!UJ!^,! 4+,!01,!-,*&!
+D4*%,<!,%%$%!=AHp@!*&<!01,!*),%*.,!,&<'8$(&0!,%%$%!=php@!
NFFP!0$!-,*+4%,!8%,<(60($&!,%%$%o!+,,!U88,&<(:!UJ!
5.1. Single-Stack SVR of Adult Brains
! HIB!,:8,%(-,&0+!$&!+7&01,0(6!+9(6,<!ABC!)$94-,+!6*&!
%,),*9!D4*9(0*0(),!*&<!D4*&0(0*0(),!61*%*60,%(+0(6+!$/!*!HIB!
-,01$<!27!/*6(9(0*0(&.!6$-8*%(+$&!*6%$++!01,!%,6$&+0%460,<!
*&<!01,!.%$4&<!0%401!F?!AB!)$94-,+J!^,!64%*0,!""VV!*<490!
2%*(&!AB!+6*&+!/%$-!U]C?pG!'>!NR>PG!U?Z?!NRFPG![_]Bp!
NRQPG!cHh!NRYPG!A[C[!NRRPG!_UHCH!NRSPG!hhAC!NRWPG!Kd]!
NRTP!*&<!]FT!NSVPG!*&<!+89(0!01,!+6*&+!(&0$!"VVV!0%*(&(&.!*&<!
"VV!)*9(<*0($&!,:*-89,+J!U99!+6*&+!1*),!*!>YR
3
!)$94-,!3(01!
"--
3
!%,+$940($&J!M,!+6*&+!*%,!*9(.&,<!0$!01,!g*9*(%*61!*09*+!
NS"P!0$!/*6(9(0*0,!+9(6(&.!*9$&.!01,!+*.(00*9G!*:(*9!*&<!6$%$&*9!
<(%,60($&+o!+,,!U88,&<(:!U!/$%!<,0*(9+!$&!0%*(&(&.!*&<!+*-89,!
.,&,%*0($&J!!
Slicing Directions and Reconstruction. H(&.9,'+0*6E!HIB!
6*&!*61(,),!<(e,%,&0!%,6$&+0%460($&!*664%*67!<,8,&<(&.!$&!
01,!<(%,60($&!$/!+9(6(&.!=+*.(00*9G!*:(*9!*&<!6$%$&*9@J!g$!+04<7!
01,!,e,60!$/!+9(6,!<(%,60($&!$&!01,!*664%*67!$/!01,!8%,<(60,<!
-$0($&G!3,!0%*(&!*!+,8*%*0,!&,03$%E!/$%!,*61!+9(6,!<(%,60($&!
*&<!89$0!(&!#(.4%,!RG!01,!)*9(<*0($&!AHp!*&<!p&<8$(&0!p%%$%!
$/!01,!-$0($&!8%,<(60,<!27!,*61!&,03$%EJ!M,!a&*9!)*9(<*0($&!
,%%$%!*00*(&,<!(+!01,!9$3,+0!/$%!+*.(00*9!+0*6E+!*0!VJWT!=AHp@!
*&<!01,!1(.1,+0!/$%!*:(*9!+0*6E+!*0!"JFF!=AHp@J!H461!*!+9(.10!
(&6%,*+,!(&!01,!8%,<(60($&!,%%$%!/$%!*:(*9!+0*6E+!-$+0!9(E,97!
+0,-+!/%$-!/,3,%!l6$%&,%m!/,*04%,+!0$!0%*6E!*&<!*9(.&!(&!*:(*9!
+9(6,+G!9,*<(&.!0$!*!9,++!8%,6(+,!*9(.&-,&0J!
Motion Prediction Error.!^,! 89$0!<(+0%(240($&+!$/!01,!8,%'!
+425,60!,%%$%+!$/!01,!8%,<(60,<!-$0($&!+0*6E+!*6%$++!YVV!1,9<'
$40!+6*&+!(&!#(.4%,!SJ!U+!,:8,60,<!/%$-!01,!)*9(<*0($&!,%%$%!
64%),+!+,,&!(&!#(.4%,!RG!+*.(00*9!8%,<(60($&+!1*),!01,!9$3,+0!
-,<(*&!-$0($&!AHp!*&<!01,!0(.10,+0!(&0,%D4*%0(9,!%*&.,J!_&!
*),%*.,G!$4%!8%,<(60,<!-$0($&!(+!*664%*0,!0$!9,++!01*&!*!)$:,9!
*901$4.1!01,!hhAC!<*0*+,0!,:1(2(0+!+9(.1097!1(.1,%!,%%$%+J!
Reconstruction and Interpolation.!#(.4%,!W!)(+4*9(X,+!01,!
F?!%,6$&+0%460($&+!$20*(&,<!4+(&.!01,!8%,<(60,<!-$0($&J!^,!
*9(.&!*99!%,6$&+0%460($&+!2*6E!0$!01,!g*9*(%*61!*09*+!NS"P!/$%!
6$-8*%(+$&!*6%$++!<(e,%,&0!%,6$&+0%460($&+J!^,!*9+$!(&694<,!
%,6$&+0%460($&+!3(01!01,!-(++(&.!(&0,&+(07!<*0*!(&0,%8$9*0,<!
4+(&.!$4%!(&0,%8$9*0$%!<,+6%(2,<!(&!H,6J!QJFJ!M,!+89*0!%,+490+!
+1$3!01*0!$4%!&,03$%E!8%,<(60+!9(&,*%!-$0($&!a,9<+!3(01$40!
01,!&,,<!/$%!*<<(0($&*9!9(&,*%!8%$5,60($&+J!M,!(&0,%8$9*0($&!
%,-$),+!1$9,+!*+!3,99!*+!+9(6(&.!*%0(/*60+!01*0!(&0,%/,%,!3(01!
<$3&+0%,*-!0*+E+!+461!*+!2%*(&!-$%81$-,0%7J!k*%.,%!1$9,+!
*%,!+,,&!31,&!+89*00(&.+!*%,!)(,3,<!*9$&.!01,!+9(6(&.!*:(+J!
Figure 6: Accuracy of predicted motion. Slicing direction has an
impact on the accuracy of predicted motion. We plot the validation
MSE (left), and EPE (end-point error, right) of the predicted motion
on adult brain slices for sagittal, axial, and coronal acquisitions.
!
Sagittal
Axial
Coronal
Motion MSE (voxels)
Motion EPE (voxels)
Sagittal
Axial
Coronal
Epochs
Motion MSE (voxels)
All AB2 AB ADH B39 CO GSP MC OAS PP UKB
Figure 7: Motion accuracy across datasets. We plot the MSE of
the motion stacks predicted on 500 held-out slice stacks (1mm
3
!"#$$"
%$&%'(")*%+*,"-.$/+0%+*,"+#"1002.1%$"%*"3"455"*,"16$.17$("817+%%19"
1,/"0*.*,19"5*%+*,"-.$/+0%+*,#"%$,/"%*":$"5*.$"1002.1%$"%;1,"1&+19(!
Sagittal
Axial
Coronal
!
S!
5.2. Single-Stack SVR of Fetal Brains
! Z,%,G!3,!64%*0,!TW!g>3!/,0*9!2%*(&!*09*+,+!*&<!%,/,%,&6,!
%,6$&+0%460($&+!*6%$++!01,![Bk!#,0*9!U09*+,+!NS>P!*&<!#,gU!
NSFP!=VJW--
3
G!*9(.&,<!0$!*.,'-*061,<![Bk!*09*+,+@!*&<!+89(0!
01,-!(&0$!WR!0%*(&(&.!*&<!">!)*9(<*0($&!#,gU!,:*-89,+J!^,!
4+,!03$!%,*9!g>3!+9(6,!+0*6E+!/%$-!ACUk!N"RP!/$%!0,+0J!C&!01,!
6*+,!$/!/,0*9!HIBG!3,!0%*(&!*!+(&.9,!+89*0O+9(6,!&,03$%E!$&!
*99!8$++(29,!+9(6(&.!<(%,60($&+!27!*8897(&.!*!%*&<$-!%$0*0($&!
=p49,%!*&.9,+!2,03,,&!q"WVr@!0$!$4%!0%*(&(&.!,:*-89,+J!^,!
6$-8*%,!$4%!-,01$<!3(01!+0*0,'$/'01,'*%0!HIB&,0!N>VP!*&<!
HI$Bg!N>YPo!+,,!U88,&<(:!UJ!_80(-(X*0($&'2*+,<!-,01$<+!
<$!&$0!3$%E!$&!+(&.9,!+0*6E+!*&<!*%,!&$0!6$-8*%,<!*.*(&+0J!
3D Reconstruction and Interpolation.!#(.4%,!T!)(+4*9(X,+!
01,!%,6$&+0%460($&+!$20*(&,<!4+(&.!$4%!8%,<(60,<!-$0($&J!^,!
*9(.&!#,gU!%,6$&+0%460($&+!0$!01,(%!.,+0*0($&*9!*.,'-*061,<!
*09*+!NS>P!/$%!6$-8*%(+$&!*6%$++!<(e,%,&0!-,01$<+J!HIB&,0!
N>VP!6$-89,0,97!/*(9+!0$!*9(.&!+9(6,+!(&!-$+0!$/!01,!6*+,+!*&<!
HI$Bg!=)>@!(&0%$<46,+!9*%.,!+9(6,!-(+*9(.&-,&0+G!9,*<(&.!0$!
+42$80(-*9!F?!%,6$&+0%460($&!3(01!*88*%,&0!<(+0$%0($&J!=M,!
HI$Bg!*&<!HIB&,0!%,6$&+0%460($&+!*%,!8%$6,++,<!4+(&.!$4%!
(&0,%8$9*0($&J@!_4%!%,6$&+0%460($&+!*%,!-$%,!/*(01/49!0$!01,!
4&<,%97(&.!F?!)$94-,+!48!0$!*-2(.4(0(,+!/%$-!+9(6(&.J!M,!
9*+0!03$!%$3+!)(+4*9(X,!%,6$&+0%460($&!$/!01,!03$!%,*9!ACUk!
*6D4(+(0($&+!/$%!31(61!&$!.%$4&<!0%401!,:(+0+!*&<!-$0($&!(+!
+-*99,%J!K&9(E,!HIB&,0G!01,!8%$8$+,<!-,01$<!.,&,%*9(X,+!0$!
%,*9!*6D4(+(0($&+!,),&!31,&!01,!&,03$%E!-$<,9!(+!0%*(&,<!$&!
+7&01,0(6!+9(6,!+0*6E+!3(01!<(e,%,&0!-$0($&!*&<!*6D4(+(0($&!
8*%*-,0,%+G!,J.JG!hH#J!H,,!U88,&<(:!]!/$%!-$%,!,:*-89,+J!
Quantitative Results.!g*29,! "!9(+0+!01,!8%,<(60($&!*664%*67!
$/!<(e,%,&0!-,01$<+!$&!)*9(<*0($&!+425,60+!3(01!Q!/$9<+J!C&!
*<<(0($&!0$!-$0($&!phpG!3,!%,8$%0!01,!+9(6,!hH\BG!$20*(&,<!
27!+9(6(&.!01,!0%4,!)$94-,!3(01!01,!8%,<(60,<!-$0($&G!*&<!01,!
hH\B!$/!01,!a&*9!%,6$&+0%460($&J!M,!01%,,'+0*6E!%,+490+!*%,!
/%$-!N>YPG!31(61!9(+0+!01,!*&61$%!8$(&0!,%%$%+!=Uhp@J!C&!01,!
+(&.9,'+0*6E!6*+,G!$4%!-,01$<!%,<46,+!,%%$%!(&!01,!8%,<(60,<!
-$0($&!27!SSJRs!*&<!QQJRs!%,9*0(),!0$!01,!HIB&,0!N>VP!*&<!
HI$Bg!=)>@!8%,<(60($&+G!%,+8,60(),97J!M,!+9(6,!*&<!)$94-,!
hH\B!1*),!*9+$!(-8%$),<!240!4&9(E,!01,!phpG!01,+,!-,0%(6+!
<,8,&<!$&!01,!hH#!$/!*6D4(+(0($&!*&<!%,6$&+0%460($&!*&<!<$!
&$0!<,a&(0(),97!-,*+4%,!*9(.&-,&0!*664%*67J!
ADHD200 8628223
ABIDE 50975
MCIC A00036476
Buckner39 990921
(a) Slice Stack
(b) Splat (Ours, True Motion)
(c) Interpolated (Ours, True Motion)
(d) True Volume
Figure 8: SVR of adult brain scans. <$"6+#219+=$"*2."8>?".$#29%#"*,"#17+%%19"@.*A#"4BC'!"1&+19"@.*A"D'!"1,/"0*.*,19"@91#%".*A'"#9+0$"#%10E#"
#F,%;$#+=$/"2#+,7".1,/*5"#9+0$"5*%+*,"@1'("G#+,7"%;$"5*%+*,"#%10E"-.$/+0%$/":F"*2.",$%A*.E!"A$"#-91%"#9+0$"/1%1"%*".$0*,#%.20%"%;$"2,/$.9F+,7"
DH"6*925$"@:'("G#+,7"*2."-.$I%.1+,$/"+,%$.-*91%*.!"A$"%;$,"+,%$.-*91%$"%;$"5+##+,7"+,%$,#+%+$#"@;*9$#'"+,"*2.".$0*,#%.20%+*,"@0'("J$".$#29%"+#"
#+5+91."%*"%;$"%.2$"DH"6*925$"@/'("<$"1//+%+*,199F"6+#219+=$"+,"@:'"1,/"@0'"%;$"#-91%"1,/"+,%$.-*91%$/".$#29%#"A;$,"%;$"%.2$"5*%+*,"+#"2#$/(""
Sagittal Acquisition EPE: 1.66mm EPE: 0.00mm Sagittal View
Axial Acquisition EPE: 2.20mm EPE: 0.00mm Coronal View
Sagittal Acquisition EPE: 2.04mm EPE: 0.00mm Axial View
Coronal Acquisition EPE: 3.36mm EPE: 0.00mm Sagittal View
!
W!
6. Discussion
Limitations.!_4%!/,0*9!HIB!&,03$%E!(+!64%%,&097!0%*(&,<!$&!
*40$-*0(6*997!+,.-,&0,<!2%*(&!+9(6,+J!g%*(&(&.!3(01!$%(.(&*9!
4&+,.-,&0,<!+9(6,!+0*6E+!6*&!(-8%$),!01,!%$24+0&,++!$/!$4%!
*88%$*61!*.*(&+0!(-8,%/,6097!.,&,%*0,<!+,.-,&0*0($&+J!
Future Work.!c(),&!01*0!$4%!*88%$*61!8%,<(60+!<,&+,!+9(6,!
-$0($&!/$%!%,6$&+0%460($&G!3,!89*&!0$!,:0,&<!$4%!*88%$*61!0$!
8%$29,-+!31,%,!01,!*6D4(%,<!+9(6,+!6*&!4&<,%.$!<,/$%-*29,!
-$0($&;,J.J!(&!/,0*9!0$%+$!$%!89*6,&0*9!%,6$&+0%460($&!N"WP;
*&<!6*&&$0!2,!0*6E9,<!4+(&.!%(.(<!-$0($&!HIBJ!U9+$G!2,00,%!
(&0,%8$9*0($&!&,03$%E+G!+461!*+!01$+,!01*0!*%,!,D4()*%(*&0!0$!
%(.(<!-$0($&G!6*&!/4%01,%!(-8%$),!%,6$&+0%460($&o!+,,!NSQPJ!!
7. Conclusion
C&!2%*(&!(-*.(&.G!+9(6,'0$')$94-,!%,6$&+0%460($&! =HIB@!
(+!*&!(-8$%0*&0!6$-840*0($&*9!0,61&(D4,!/$%!01,!(-*.(&.!$/!
+425,60+!31$+,!-$0($&!6*&&$0!,*+(97!2,!6$&0%$99,<J!i,0G!01,!
-*5$%(07!$/!HIB!0,61&(D4,+!8%,)($4+97!8%$8$+,<!<$!&$0!%,*8!
01,!2,&,a0+!$/!#[\!-$<,9+!01*0!1*),!.%*<4*997!2,6$-,!01,!
-*(&+0*7!(&!69$+,97!%,9*0,<!0*+E+G!+461!*+!(-*.,!%,.(+0%*0($&!
*&<!+,.-,&0*0($&J!M,!/,3!9,*%&(&.'2*+,<!HIB!0,61&(D4,+!
%,+$%0!0$!8%,0%*(&,<!C-*.,\,0!69*++(a6*0($&!*&<!,),&!)(+($&!
0%*&+/$%-,%!-$<,9+J!\$0!$&97!<$,+!$4%!3$%E!a99!01,!.*8!(&!
01,!HIB!-,01$<!<,),9$8-,&0!0(-,9(&,!240!(0!*9+$!+1$3+!01*0!
*!#[\!-$<,9!6*&!8%$<46,!+0*0,'$/'01,'*%0!HIB!$406$-,+J!
Acknowledgments. HCi!01*&E+!A*%.1,%(0*!#(%,&X,!/$%!1,%!
01$4.10'8%$)$E(&.!D4,+0($&+J!h%(-*%7!+488$%0!.(),&!27!01,!
\CZ!.%*&0+!dTTUcVW"QTF!*&<!B#"AZ">F"TYJ!H488$%0,<!
27!\CZ!BV"UcVRQV>SG!B>"UcVW>VW>!*&<!hQ"p]VFVVVRJ!
FeTA Sub 073
FeTA Sub 053
MIAL001
Run
2
MIAL001
Run 1
(a) Slice Stack
(b) SVRnet
[20]
(c) SVoRTv2 [25]
(c) Splat (Ours)
(d) Interp (Ours)
(f) True Volume
Figure 9: Single-stack fetal SVR. <$"6+#219+=$"%;$"8>?".$#29%#"*,"619+/1%+*,"#2:K$0%#"L.*5"%;$"M$NO"/1%1#$%"PQDR"1,/"%A*".$19"10S2+#+%+*,#""
L.*5")TOU"P4VR("W**5$/"+,"X&"L*.":$%%$."6+#+:+9+%F("Y2.".$#29%#"09*#$9F".$#$5:9$"%;$"7.*2,/"%.2%;"6*925$#"A;+9$"8>*?N6C"1,/"8>?,$%"
.$0*,#%.20%+*,#"@A+%;"*2."+,%$.-*91%+*,'"$&;+:+%"#-1%+19"/+#%*.%+*,"L.*5"+,1002.1%$"#9+0$"19+7,5$,%("
Y2."+5-9$5$,%1%+*,Z"#$$"O--$,/+&"O(""
Random Acquisition EPE: 8.69mm EPE: 3.70mm EPE: 1.49mm Pathological
Sagittal Acquisition EPE: Unknown EPE: Unknown EPE: Unknown
Random Acquisition EPE: 5.72mm EPE: 2.61mm EPE: 1.45mm Neurotypical
Sagittal Acquisition EPE: Unknown EPE: Unknown EPE: Unknown
Unknown
Unknown
"
)$%;*/"
O[\])*%+*,"
"
\[\"@55'
89+0$""
[8^?"@/_'"
>* 9 2 5 $ "
[8^?"@/_'"
N+5$"
@#$0'"
D"8%10E#
"
8>?,$%`"PCaR"
4C(bCcd(Ve"
Ca(dDc4(VC"
4e(dXc4(dC"
B"
[91,$T,>*9`"PCXR"
4C(XecV(QD"
4e(eVc4(QD"
4b(ebc4(VC"
B"
8>*?N`"PCdR"
X(Ddca(ea"
Cd(CVc4(bV"
CD(DCc4(XC"
B"
4"8%10E
"
8>?,$%
"PCaR"
b(abcC(Dd"
4D(XVc4(dV"
4V(aDc4(Cb"
0.011s
8>*?N"@6C'"PCdR"
D(CQca(Q4"
Ca(QQc4(Cb"
4b(Xec4(VD"
a(4XC#"
[.*-*#$/"@Y2.#'"
1.81
c
0.40
23.69c1.39
23.43c1.40
a(CCX#"
Table 1: Validati o n a ccuracy."<$"9+#%"%;$"5*%+*,"1,/"DH"6*925$
"
.$0*,#%.20%+*,"1002.10F"*L"/+f$.$,%"5$%;*/#("`?$#29%#"%1E$,"L.*5
"
PCdR("N+5$/"*,"?Ngbaaa("
Y2."+5-9$5$,%1%+*,Z"#$$"O--$,/+&"O("
!
T!
References
" P4R" )+%#2;+.*"^+#;+/1"$%"19("H$%1+9$/"#$5+12%*51%$/")?T":1#$/"
5*.-;*5$%.F" *L" %;$" ,$*,1%19" :.1+,h" [.$9+5+,1.F" .$#29%#("
NeuroImage!"DC@D'h4aX4B4aXe!"CaaV("
" PCR" i;1*"j("U+2"$%"19("k21,%+l01%+*,"*L"6*925$%.+0"5*.-;*5$%.F"
1,/" *-%+019" -.*-$.%F" +," %;$" 0*.%$&" *L" ;251," 0$.$:$9925" 1%"
5+0.*5$%$.".$#*92%+*,("NeuroImage!"CXXh44bVCQ!"CaC4("
" PDR" )1&A$99"U("\99+*%%"$%"19("_.1+,"5*.-;*5$%.F"+,"*9/$."1/29%#"
A+%;"1,/"A+%;*2%" /$5$,%+1"2#+,7"$&%.$5$9F".1-+/" #%.20%2.19"
#01,#("NeuroImage!"CQVh4Ca4QD!"CaCD("
" PXR" _.20$"M+#0;9("M.$$82.L$.("NeuroImage!"VC@C'hQQXBQb4!"Ca4C("
" PdR" O5F" W;1*!" m2;1" _191E.+#;,1,!" M.$/*" H2.1,/!" j*;," >("
m2%%17!" 1,/" O/.+1," >(" H1901(" H1%1" 1275$,%1%+*," 2#+,7"
9$1.,$/" %.1,#L*.51%+*,#" L*." *,$I#;*%" 5$/+019" +517$"
#$75$,%1%+*,("T,"Proc. CVPR!"Ca4e("
" PVR" U+991" Wn99$+!" j21," \27$,+*" T79$#+1#!"o1,75+,7" Y2!" [(" \99$,"
m.1,%!" 1,/" _.20$" M+#0;9(" T,L1,%" M.$$82.L$.h"O," 12%*51%$/"
#$75$,%1%+*,"1,/"#2.L10$"$&%.10%+*,"-+-$9+,$"L*."N4IA$+7;%$/"
,$2.*+517+,7" /1%1" *L" +,L1,%#" aBC" F$1.#(" NeuroImage!"
C4bh44VeXV!"CaCa("
" PQR" O91," i(" \61,#!" O,/.$A" U(" j1,E$!" H(" U*2+#" i*99+,#!" 1,/"
8F961+," _1+99$%(" _.1+," %$5-91%$#" 1,/" 1%91#$#(" NeuroImage!"
VC@C'he44BeCC!"Ca4C("
" PbR" 8;1/1:" p;1," $%" 19(" M$%19" :.1+," 7.*A%;" -*.%.1F$/" :F" 1"
#-1%+*%$5-*.19"/+f2#+*,"%$,#*.")?T"1%91#"0*5-2%$/"L.*5"+,"
2%$.*"+517$#("NeuroImage!"4bdhdeDBVab!"Ca4e("
" PeR" O/.+q" i1#15+%K1,1!" 1,/" j21," \27$,+*" T79$#+1#(" r+7;I
.$#*92%+*," 1%91#+,7" 1,/" #$75$,%1%+*," *L" %;$" #2:0*.%$&h"
?$6+$A" 1,/" -$.#-$0%+6$" *," 0;199$,7$#" 1,/" *--*.%2,+%+$#"
0.$1%$/" :F" 510;+,$" 9$1.,+,7(" NeuroImage!" CVDh44eV4V!"
CaCC("
"P4aR" 8;2=;*2" j+1,7!" r2+" g2$!" O91," m9*6$.!" )1.F" ?2%;$.L*./!"
H1,+$9" ?2$0E$.%!" 1,/" j*#$-;" >(" r1K,19(" )?T" *L" 5*6+,7"
#2:K$0%#" 2#+,7" 529%+#9+0$" #,1-#;*%" +517$#" A+%;" 6*925$"
.$0*,#%.20%+*," @8>?'h" O--9+01%+*," %*" L$%19!" ,$*,1%19!" 1,/"
1/29%":.1+," #%2/+$#(" IEEE Trans. Med. Imaging!"CV@Q'heVQB
eba!"CaaQ("
"P44R" O9+" m;*9+-*2.!" j2/F" O(" \#%.*f!" 1,/" 8+5*," p(" <1.l$9/("
?*:2#%" #2-$.I.$#*92%+*," 6*925$" .$0*,#%.20%+*," L.*5" #9+0$"
10S2+#+%+*,#h" O--9+01%+*," %*" L$%19" :.1+," )?T(" IEEE Trans.
Med. Imaging!"Ce@4a'h4QDeB4Qdb!"Ca4a("
"P4CR" p+*"p+5!"[+*%."O("r1:1#!"M.1,0*+#"?*2##$12!"Y.+%"O("m9$,,!"
O,%;*,F" j(" _1.E*6+0;!" 1,/" i*9+," 8%2/;*95$(" T,%$.#$0%+*,"
:1#$/"5*%+*,"0*..$0%+*,"*L"529%+#9+0$")?T"L*."DIH"+,"2%$.*"
L$%19" :.1+," +517$" L*.51%+*,(" IEEE Trans. Med. Imaging!"
Ce@4'h4XVB4db!"Ca4a("
"P4DR" )1.+1" p2E9+#*61I)2.71#*61!" m$.1./+,$" k217;$:$2.!" )1.F"
O(" ?2%;$.L*./!" j*#$-;" >(" r1K,19!" 1,/" j29+1" O(" 80;,1:$9("
?$0*,#%.20%+*," *L" L$%19" :.1+," )?T" A+%;" +,%$,#+%F" 51%0;+,7"
1,/" 0*5-9$%$" *2%9+$." .$5*619(" Med. Image Anal.!"
4V@b'h4ddaB4dVX!"Ca4C("
"P4XR" _$.,;1./" p1+,=" $%" 19(" M1#%" 6*925$" .$0*,#%.20%+*," L.*5"
5*%+*," 0*..2-%$/" #%10E#" *L" CH" #9+0$#(" IEEE Trans. Med.
Imaging!"DX@e'h4ea4B4e4D!"Ca4d("
"P4dR" O5+."O91,#1.F"$%"19("[>?h"[1%0;I%*I>* 9 2 5 $ " ? $ 0 * , # % . 2 0 % + * , "
L*."91.7$"1.$1"5*%+*," 0*..$0%+*,"*L" L$%19" )?T("IEEE Trans.
Med. Imaging!"DV@4a'hCaD4BCaXX!"Ca4Q("
"P4VR" 8s:1#%+$," N*2.:+$." $%" 19(" O2%*51%$/" %$5-91%$I:1#$/" :.1+,"
9*019+=1%+*,"1,/"$&%.10%+*,"L*."L$%19":.1+,")?T".$0*,#%.20%+*,("
NeuroImage!"4ddhXVaBXQC!"Ca4Q("
"P4QR" )+0;1$9" \:,$." $%" 19(" O," 12%*51%$/" L.15$A*.E" L*."
9*019+=1%+*,!" #$75$,%1%+*," 1,/" #2-$.I.$#*92%+*,"
.$0*,#%.20%+*,"*L"L$%19":.1+,")?T("NeuroImage!"CaVh44VDCX!"
CaCa("
"P4bR" O9$,1" G2#!" N*,7" W;1,7!" U12.$,0$" r(" j10E#*,!" J*51#"O("
?*:$.%#!" )1.F"O(" ?2%;$.L*./!" j*#$-;">(" r1K,19!" 1,/" )1.+1"
H$-.$=("H$L*.51:9$"#9+0$I%*I6*925$".$7+#%.1%+*,"L*."5*%+*,"
0*..$0%+*,"*L"L$%19":*/F"1,/"-910$,%1")?T("IEEE Trans. Med.
Imaging!"De@e'hCQdaBCQde!"CaCa("
"P4eR" M.1,0*+#"?*2##$12!"Y.+%"O("m9$,,!"_+#%.1"T*./1,*61!"i912/+1"
?*/.+72$=Ii1..1,=1!" H1,+$9" _(" >+7,$.*,!" j15$#" O("
_1.E*6+0;!" 1,/" i*9+," 8%2/;*95$(" ?$7+#%.1%+*,I:1#$/"
1--.*10;"L*.".$0*,#%.20%+*,"*L";+7;I.$#*92%+*,"+,"2%$.*"L$%19"
)?":.1+,"+517$#("Acad. Radiol.!"4D@e'h4aQCB4ab4!"CaaV("
"PCaR" _$,K15+," r*2" $%" 19(" DIH" ?$0*,#%.20%+*," +," 01,*,+019" 0*I
*./+,1%$" #-10$" L.*5" 1.:+%.1.+9F" *.+$,%$/" CIH" T517$#(" IEEE
Trans. Med. Imaging!"DQ@b'h4QDQB4Qda!"Ca4b("
"PC4R" _$,K15+,"r*2"$%"19("i*5-2%+,7"i^^"9*##"1,/"7.1/+$,%#"L*."
-*#$" $#%+51%+*," A+%;" ?+$51,,+1," 7$*5$%.F(" T," Proc.
MICCAI!"Ca4b("
"PCCR" 8$F$/" 81/$7;" )*;#$,+" 819$;+!" 8;1/1:" p;1,!" H$,+="
\./*752#!" 1,/" O9+" m;*9+-*2.(" ?$19I%+5$" /$$-" -*#$"
$#%+51%+*," A+%;" 7$*/$#+0" 9*##" L*." +517$I%*I%$5-91%$" .+7+/"
.$7+#%.1%+*,(" IEEE Trans. Med. Imaging!" Db@C'hXQaBXb4!"
Ca4e("
"PCDR" o2 0; $, " [ $ +! " U + #; $, 7" <1 ,7 !" M $, S+ 1 ,7 " W ;1 *! " N1 *" W ;* ,7 !"
U2L1,"U+1*!"H+,771,7"8;$,!"1,/"m1,7"U+("O,1%*5FI72+/$/"
0*,6*92%+*,19",$2.19" ,$%A*.E" L*."5*%+*,"0*..$0%+*," +,"L$%19"
:.1+,")?T("T,"Proc. MLMI!"CaCa("
"PCXR" [1EIr$+" o$2,7!" )*#E1" O9+1#+!" O.+#" N(" [1-17$*.7;+*2!"
)*,+S2$" r11E!" <$+/+" g+$!" 1,/" O,1" T(" U(" ^15:2.$%$("
U$1.,+,7" %*"51-" CH"29%.1#*2,/"+517$#" +,%*"DH" #-10$"A+%;"
5+,+519" ;251," 1,,*%1%+*,(" Med. Image Anal.!" Qah4a4eeb!"
CaC4("
"PCdR" j2,#;$,"g2!"H1,+$9")*F$.!"[("\99$,"m.1,%!"[*9+,1"m*991,/!"
j21," \27$,+*" T79$#+1#!" 1,/" \9L1." O/19#%$+,##*,(" 8>*?Nh"
T%$.1%+6$"%.1,#L*.5$."L*."#9+0$I%*I6*925$".$7+#%.1%+*,"+,"L$%19"
:.1+,")?T("T,"Proc. MICCAI!"CaCC("
"PCVR" \9+#$"N2.E"$%"19("M2,0%+*,19"0*,,$0%*5$"*L"%;$"L$%19":.1+,("J.
Neurosci.!"De@Xe'heQ4VBeQCX!"Ca4e("
"PCQR" H1,+$9" 8*:*%E1" $%" 19(" )*%+*," 0*..$0%+*," 1,/" 6*925$%.+0"
.$0*,#%.20%+*," L*." L$%19" L2,0%+*,19" 517,$%+0" .$#*,1,0$"
+517+,7"/1%1("NeuroImage!"Cddh44eC4D!"CaCC("
"PCbR" g+1*;21," i1*!" j+1,;21" o1,7!" j2," W;1,7!" H*,7" ^+$!"
)+,K$*,7"p+5!"k+1,"<1,7!"1,/"H+,771,7"8;$,("H$L*.51:9$"
+517$" .$7+#%.1%+*," :1#$/" *," #+5+91.+%FI#%$$.$/" i^^"
.$7.$##+*,("T,"Proc. MICCAI!"Ca4Q("
"PCeR" m2;1" _191E.+#;,1,!" O5F" W;1*!" )$.%" ?(" 81:2,02!" j*;,"
m2%%17!"1,/"O/.+1,">("H1901("O,"2,#2-$.6+#$/"9$1.,+,7"5*/$9"
L*."/$L*.51:9$"5$/+019"+517$".$7+#%.1%+*,("T," Proc. CVPR!"
Ca4b("
"PDaR" N*,F" i(" <(" )*E!" 1,/"O9:$.%" i(" 8(" i;2,7(" M1#%" #F55$%.+0"
/+f$*5*.-;+0" +517$" .$7+#%.1%+*," A+%;" 0*,6*92%+*,19" ,$2.19"
,$%A*.E#("T,"Proc. CVPR!"CaCa("
"PD4R" 8$1,"T("o*2,7!"o1t9"_19:1#%.$!"O/.+1,">("H1901!"<+99+15")("
!
"V!
<$99#!" j21," \27$,+*" T79$#+1#!" 1,/" _.20$" M+#0;9(" 82-$.<1.-h"
82-$.6+#$/" 9$1.,+,7" 1,/" A1.-+,7" *," GI^$%" L*." +,61.+1,%"
#2:6*&$9I-.$0+#$".$7+#%.1%+*,("T,"Proc. WBIR!"CaCC("
"PDCR" )+1*" p1,7!" g+1*K2,"r2!"<$+9+," r21,7!" )1%%;$A"?(" 80*%%!"
1,/" )12.+0+*" ?$F$#(" H219I#%.$15" -F.15+/" .$7+#%.1%+*,"
,$%A*.E("Med. Image Anal.!"Qbh4aCDQe!"CaCC("
"PDDR" O9$&$F" H*#*6+%#E+F" $%"19(" M9*A^$%h" U$1.,+,7" Y-%+019" M9*A"
<+%;"i*,6*92%+*,19"^$%A*.E#("T,"Proc. ICCV!"Ca4d("
"PDXR" j1#*,"j("o2!"O/15"<("r1.9$F!"1,/"p*,#%1,%+,*#"m("H$.-1,+#("
_10E" %*" :1#+0#h" G,#2-$.6+#$/" 9$1.,+,7" *L" *-%+019" u*A" 6+1"
:.+7;%,$##" 0*,#%1,0F" 1,/" 5*%+*," #5**%;,$##(" T," Proc.
ECCV!"Ca4V("
"PDdR" \//F"T97!"^+E*912#")1F$.!"N*,5*F"81+E+1!")1.7.$%"p$2-$.!"
O9$&$F" H*#*6+%#E+F!" 1,/" J*51#" _.*&(" M9*A^$%" C(ah"
\6*92%+*,"*L"*-%+019"u*A"$#%+51%+*,"A+%;"/$$-",$%A*.E#("T,"
Proc. CVPR!"Ca4Q("
"PDVR" H$S+,7" 82,!"g+1*/*,7"o1,7!" )+,7Io2" U + 2! " 1 , /" j 1 ," p 1 2% =( "
[<iI^$%h" i^^#" L*." *-%+019" u*A" 2#+,7" -F.15+/!" A1.-+,7!"
1,/"0*#%"6*925$("T,"Proc. CVPR!"Ca4b("
"PDQR" O,2.17" ?1,K1,!" 1,/" )+0;1$9" j(" _910E(" Y-%+019" u*A"
$#%+51%+*,"2#+,7"1"#-1%+19"-F.15+/",$%A*.E("T,"Proc. CVPR!"
Ca4Q("
"PDbR" [$,7-$,7" U+2!" )+0;1$9" UF2!" T.A+," p+,7!" 1,/" j+1" g2("
8$9M9*Ah" 8$9LI#2-$.6+#$/" 9$1.,+,7" *L" *-%+019" u*A(" T," Proc.
CVPR!"Ca4e("
"PDeR" j2,;A1"r2.!"1,/"8%$L1," ?*%;("T%$.1%+6$" .$#+/219".$l,$5$,%"
L*." K*+,%" *-%+019" u*A" 1,/" *0092#+*," $#%+51%+*,(" T," Proc.
CVPR!"Ca4e("
"PXaR" M1F1*" U+2!" i;2,;21" 8;$,!" 1,/" m2*#;$,7" U+,(" H$$-"
0*,6*92%+*,19",$2.19"l$9/#"L*."/$-%;"$#%+51%+*,"L.*5"1"#+,79$"
+517$("T,"Proc. CVPR!"Ca4d("
"PX4R" j1$Ir1," U$$!" 1,/" i;1,7I82" p+5(" )*,*0291." /$-%;"
$#%+51%+*,"2#+,7".$91%+6$"/$-%;"51-#("T,"Proc. CVPR!"Ca4e("
"PXCR" i9$5$,%" m*/1./!" Y+#+," )10"O*/;1!" )+0;1$9" M+.51,!" 1,/"
m1:.+$9"j("_.*#%*A("H+77+,7"+,%*"#$9LI#2-$.6+#$/"5*,*0291."
/$-%;"$#%+51%+*,("T,"Proc. ICCV!"Ca4e("
"PXDR" 8;1.+S"M1.**S" _;1%!"T:.1;$$5"O9;1#;+5!"1,/"[$%$."<*,E1("
O/1_+,#h" H$-%;" $#%+51%+*," 2#+,7" 1/1-%+6$" :+,#(" T," Proc.
CVPR!"CaC4("
"PXXR" j+1"H$,7!"<$+"H*,7!"?+0;1./"8*0;$.!"U+Ij+1"U+!"p1+"U+!"1,/"
U+" M$+IM$+(" T517$^$%h" 1" 91.7$I#019$" ;+$.1.0;+019" +517$"
/1%1:1#$("T,"Proc. CVPR!"Caae("
"PXdR" O9$&$F" H*#*6+%#E+F"$%"19("O," +517$"+#" A*.%;" 4V&4V"A*./#h"
N.1,#L*.5$.#"L*."+517$".$0*7,+%+*,"1%"#019$("T,"Proc. ICLR!"
CaCa("
"PXVR" O,2.17"O.,1:!")*#%1L1"H$;7;1,+!"m$*.7"r$+7*9/!"i;$,"82,!"
)1.+*" U2v+w!" 1,/" i*./$9+1" 80;5+/(" >+>+Nh"O" 6+/$*" 6+#+*,"
%.1,#L*.5$.("T,"Proc. ICCV!"CaC4("
"PXQR" W$" U+2" $%" 19(" 8A+," N.1,#L*.5$.h" r+$.1.0;+019" 6+#+*,"
%.1,#L*.5$."2#+,7"#;+L%$/"A+,/*A#("T,"Proc. ICCV!"CaC4("
"PXbR" j$.$5+$" O,S2$=!" \9#1" H(" O,7$9+,+!" 1,/" T#1:$99$" _9*0;("
O2%*51%+0"#$75$,%1%+*,"*L";$1/"#%.20%2.$#"*,"L$%19")?T("T,"
Proc. ISBI!"Caae("
"PXeR" _$.,;1./"p1+,=!"p$6+,"p$.12/.$,!">1,$##1"pF.+1E*-*29*2!"
)1.F" ?2%;$.L*./!" j*#$-;" >(" r1K,19!" 1,/" H1,+$9" ?2$0E$.%("
M1#%"L299F"12%*51%+0":.1+,"/$%$0%+*,"+,"L$%19")?T"2#+,7"/$,#$"
.*%1%+*,"+,61.+1,%"+517$"/$#0.+-%*.#("T,"Proc. ISBI!"Ca4X("
"PdaR" p$6+,"p$.12/.$,!">1,$##1"pF.+1E*-*29*2!")1.F"?2%;$.L*./!"
j*#$-;">(" r1K,19!" 1,/" H1,+$9"?2$0E$.%(" U*019+#1%+*,"*L" %;$"
:.1+," +," L$%19" )?T" 2#+,7" :2,/9$/" 8TMN" L$1%2.$#(" T," Proc.
MICCAI!"Ca4D("
"Pd4R" p$6+,"p$.12/.$,"$%" 19("O2%*51%$/" L$%19":.1+,"#$75$,%1%+*,"
L.*5" CH" )?T" #9+0$#" L*." 5*%+*," 0*..$0%+*,(" NeuroImage!"
4a4hVDDBVXD!"Ca4X("
"PdCR" )1.%+," ?1K0;9" $%" 19(" U$1.,+,7" 2,/$." /+#%.+:2%$/" A$1E"
#2-$.6+#+*,!";%%-h]]1.&+6(*.7]1:#]4VaV(a44aa!"Ca4V("
"PdDR" 8$F$/"81/$7;")*;#$,+"819$;+"$%"19("?$19I%+5$"12%*51%+0"L$%19"
:.1+,"$&%.10%+*,"+,"L$%19")?T":F"/$$-"9$1.,+,7("T,"Proc. ISBI!"
Ca4b("
"PdXR" Y91L"?*,,$:$.7$.!"[;+9+--"M+#0;$.!"1,/"J*51#"_.*&("GI^$%h"
0*,6*92%+*,19",$%A*.E#"L*.":+*5$/+019"+517$"#$75$,%1%+*,("
T,"Proc. MICCAI!"Ca4d("
"PddR" j2,#;$," g2!"H1,+$9" )*F$.!" _*.K1,"m17*#E+!" j21," \27$,+*"
T79$#+1#!" [(" \99$," m.1,%!" [*9+,1" m*991,/!" 1,/" \9L1."
O/19#%$+,##*,(" ^$8>*?h" T5-9+0+%" ,$2.19" .$-.$#$,%1%+*," L*."
#9+0$I%*I6*925$" .$0*,#%.20%+*," +," )?T(" IEEE Trans. Med.
Imaging!"XC@V'h4QaQB4Q4e!"CaCD("
"PdVR" _$," )+9/$,;199!" [.1%29" [(" 8.+,+61#1,!" )1%%;$A" N1,0+E!"
j*,1%;1,"N("_1..*,!"?16+"?1515**.%;+!"1,/"?$,"^7("^$?Mh"
?$-.$#$,%+,7" #0$,$#" 1#" ,$2.19" .1/+1,0$" l$9/#" L*." 6+$A"
#F,%;$#+#!"T,"Proc."ECCV!"CaCa("
"PdQR" 81;1." ^(" 819$$5(" M$%19" )?Th" O," 1--.*10;" %*" -.10%+0$h" O"
.$6+$A("J. Adv. Res.!"d@d'hdaQBdCD!"Ca4X("
"PdbR" r21I5$+"i;$,!"1,/"[(p(">1.#;,$F(")2%219"+,L*.51%+*,I:1#$/"
iNI)?" :.1+," +517$" .$7+#%.1%+*," 2#+,7" 7$,$.19+=$/" -1.%+19"
6*925$" K*+,%" ;+#%*7.15" $#%+51%+*,(" IEEE Trans. Med.
Imaging!"CC@e'h4444B444e!"CaaD("
"PdeR" O,/.$A"O/15#!"j*,75+,"_1$E!"1,/")F$.#"O:.1;15"H16+#("
M1#%" ;+7;I/+5$,#+*,19" l9%$.+,7" 2#+,7" %;$" -$.52%*;$/.19"
91%%+0$("Comput. Graph. Forum!"Ce@C'hQdDBQVC!"Ca4a("
"PVaR" ^+9#"[1-$,:$.7!"O,/.s#"_.2;,!"J*51#"_.*&!"8%$-;1,"H+/1#!"
1,/" j*10;+5" <$+0E$.%(" r+7;9F" 1002.1%$" *-%+0" u*A"
0*5-2%1%+*," A+%;" %;$*.$%+0199F" K2#%+l$/" A1.-+,7(" Int. J.
Comput. Vis.!"VQ@C'h4X4B4db!"CaaV("
"PV4R" ^+0;*91#"j("r+7;15("i*5-2%+,7"%;$"-*91."/$0*5-*#+%+*,x
A+%;" 1--9+01%+*,#(" SIAM J. Sci. Stat. Comput.!" Q@X'h44VaB
44QX!"4ebV("
"PVCR" O("H+")1.%+,*"$%"19("J$"12%+#5":.1+,"+517+,7"/1%1"$&0;1,7$h"
%*A1./#" 1" 91.7$I#019$" $61921%+*," *L" %;$" +,%.+,#+0" :.1+,"
1.0;+%$0%2.$" +," 12%+#5(" Mol. Psychiatry!" 4e@V'hVdeBVVQ!"
Ca4X("
"PVDR" )+0;1$9")+9;15!"H15+$,"M1+.!")11.%$,")$,,$#!"1,/"8%$A1.%"
)*#%*L#EF("J$"OHrHICaa"0*,#*.%+25h"1"5*/$9"%*"1/61,0$"
%;$" %.1,#91%+*,19" -*%$,%+19" *L" ,$2.*+517+,7" +," 09+,+019"
,$2.*#0+$,0$("Front. Syst. Neurosci.!"V!"Ca4C("
"PVXR" >+,0$" i19;*2,!" j+,7" 82+!" p$,%" p+$;9!" j$##+01" N2.,$.!" \9$,1"
O99$,!" 1,/" m*/L.$F" [$1.9#*,(" \&-9*.+,7" %;$" -#F0;*#+#"
L2,0%+*,19" 0*,,$0%*5$h" 1:$..1,%" +,%.+,#+0" ,$%A*.E#" +,"
#0;+=*-;.$,+1" 1,/" :+-*91." /+#*./$.(" Front. Psychiatry!" C!"
Ca4C("
"PVdR" O6.15" j(" r*95$#" $%" 19(" _.1+," m$,*5+0#" 82-$.#%.20%" [.*K$0%"
+,+%+19"/1%1".$9$1#$"A+%;"#%.20%2.19!"L2,0%+*,19!"1,/":$;16+*.19"
5$1#2.$#("Sci. Data!"C@4'h4daaD4!"Ca4d("
"PVVR" ?1,/F" U(" m*992:" $%" 19(" J$" )iTi" i*99$0%+*,h" 1" #;1.$/"
.$-*#+%*.F"*L"529%+I5*/19!"529%+I#+%$":.1+,"+517$"/1%1"L.*5"1"
09+,+019" +,6$#%+71%+*," *L" #0;+=*-;.$,+1(" Neuroinformatics!"
!
""!
44@D'hDVQBDbb!"Ca4D("
"PVQR" H1,+$9" 8(" )1.02#!" N.10F" r(" <1,7!" j15+$" [1.E$.!" j*;," m("
i#$.,1,#EF!" j*;," i(" )*..+#!" 1,/" ?1,/F" U(" _20E,$.(" Y-$,"
O00$##"8$.+$#"*L"T517+,7"8%2/+$#"@YO8T8'h"i.*##I#$0%+*,19"
)?T" /1%1" +," F*2,7!" 5+//9$" 17$/!" ,*,/$5$,%$/!" 1,/"
/$5$,%$/"*9/$."1/29%#("J. Cogn. Neurosci.!"4e@e'h4XebB4daQ!"
CaaQ("
"PVbR" p$,,$%;" )1.$E" $%" 19(" J$" [1.E+,#*," [.*7.$##+*," )1.E$."
T,+%+1%+6$"@[[)T'("Prog. Neurobiol.!"ed@X'hVCeBVDd!"Ca44("
"PVeR" i1%;+$" 82/9*A"$%"19(" Gp" _+*:1,Eh"1,"*-$," 100$##".$#*2.0$"
L*."+/$,%+LF+,7"%;$"012#$#"*L"1"A+/$".1,7$"*L"0*5-9$&"/+#$1#$#"
*L"5+//9$"1,/"*9/"17$("PLOS Med.!"4C@D'h$4aa4QQe!"Ca4d("
"PQaR" _.20$" M+#0;9" $%" 19(" <;*9$" :.1+," #$75$,%1%+*,h" O2%*51%$/"
91:$9+,7" *L" ,$2.*1,1%*5+019" #%.20%2.$#" +," %;$" ;251," :.1+,("
Neuron!"DD@D'hDX4BDdd!"CaaC("
"PQ4R" j("N191+.10;!"1,/"[+$..$"N*2.,*2&("i*I-91,1."#%$.$*%1&+0"1%91#"
*L"%;$";251,":.1+,h"DI/+5$,#+*,19"-.*-*.%+*,19" #F#%$5yh"1,"
1--.*10;" %*"0$.$:.19" +517+,7(" m("J+$5$yZ"J+$5$")$/+019"
[2:9+#;$.#!"8%2%%71.%!"^$A"o*.E"4ebb("
"PQCR" O9+"m;*9+-*2."$%"19("O",*.51%+6$"#-1%+*%$5-*.19")?T"1%91#"*L"
%;$" L$%19" :.1+," L*." 12%*51%+0" #$75$,%1%+*," 1,/" 1,19F#+#" *L"
$1.9F":.1+,"7.*A%;("Sci. Rep.!"Q@4'hXQV!"Ca4Q("
"PQDR" p$99F" [1F$%%$" $%" 19("O," 12%*51%+0" 529%+I%+##2$" ;251," L$%19"
:.1+," #$75$,%1%+*," :$,0;51.E" 2#+,7" %;$" M$%19" N+##2$"
O,,*%1%+*,"H1%1#$%("Sci. Data!"b@4'h4VQ!"CaC4("
PQXR"" H*,7/*,7"i;$,!")+E$"H16+$#!")1%%;+1#"j("\;.;1./%!"i1.*91I
_+:+1,$" 80;n,9+$:!" M$./+1" 8;$..F!" 1,/" j29+z," N10;$991("
T517+,7" A+%;" $S2+61.+$,%" /$$-" 9$1.,+,7h" L.*5" 2,.*99$/"
,$%A*.E"/$#+7,"%*"L299F"2,#2-$.6+#$/"9$1.,+,7("IEEE Signal
Process. Mag.! Xa@4'h4DXB4XQ!"CaCD("
! !
!
">!
A. Training and Validation
A.1 Training Details
! #$%!0%*(&(&.G!3,!8%,8*%,!8*(%,<!=+9(6,!+0*6EG!-$0($&!+0*6E@!
*&<!=+89*00,<!)$94-,G!.%$4&<!0%401!)$94-,@!0%*(&(&.!<*0*!27!
*8897(&.!*!%*&<$-!(+$0%$8(6!X$$-!=q>R!)$:,9+@G!1$%(X$&0*9!
f(8G!%$0*0($&!=p49,%!*&.9,+!q>Vr!/$%!*<490!2%*(&+!*&<!q"WVr!
/$%!/,0*9@!*&<!0%*&+9*0($&!=q"F!)$:,9+@!0$!01,!%,.(+0,%,<!>YR
3
!
%,/,%,&6,!)$94-,!="--
3
!*6D4(+(0($&G!g*9*(%*61!/$%!*<490!*&<!
VJW--
3
!#,gU!%,6$&+0%460($&G![Bk!/$%!/,0*9@!0$!a%+0!+(-49*0,!
01,!<(),%+(07!(&!+6*&&,<!+425,60+!*&<!)*%($4+!8$+,+!01*0!01,7!
-*7!2,!+6*&&,<!4&<,%J!g$!+(-49*0,!+9(6(&.G!3,!*8897!%*&<$-!
%$0*0($&+!=p49,%!*&.9,+!q>Vr@!*&<!0%*&+9*0($&+!=q>R!)$:,9+@!
01*0!)*%7!+-$$0197!*6%$++!+9(6,+!27!%*&<$-97!+*-89(&.!F>!0$!
RQ!%$0*0($&+!*&<!0%*&+9*0($&+!/%$-!01,!%*&.,+!+1$3&!*2$),!
*&<!+-$$0197!(&0,%8$9*0(&.!01,-!4+(&.!642(6!]!+89(&,+J!^,!
(&0,%9,*),!01,!03$!1*9),+!$/!-$0($&!0%*5,60$%(,+!0$!+(-49*0,!
03$'+1$0!+,D4,&6,+!078(6*997!4+,<!(&!>?!ABC!*6D4(+(0($&+J!
! H9(6,!*6D4(+(0($&!(+!+(-49*0,<!27!294%%(&.!01,!+9(6,+!4+(&.!
*!2$:6*%!hH#!=/$4%!)$:,9+!3(<,@!*9$&.!01,!+9(6(&.!<(%,60($&!
=+*.(00*9G!*:(*9!$%!6$%$&*9!/$%!*<490!2%*(&+G!*&<!+*.(00*9!(&!01,!
6*+,!$/!/,0*9G!31,%,!01,!q"WVr!p49,%!*&.9,+!-,*&!01*0!+9(6,+!
*%,!*6D4(%,<!*9$&.!%*&<$-!<(%,60($&+!*&73*7@!*&<!+*-89(&.!
,),%7!/$4%01!+9(6,!*9$&.!01,!+*-,!*:(+J!H9(6,!(&0,&+(0(,+!*%,!
-*&(849*0,<!27!*8897(&.!c*4++(*&!&$(+,!3(01!&$(+,!+0*&<*%<!
<,)(*0($&!𝜎 = 0.01!*&<!.*--*!*4.-,&0*0($&!3(01!,:8$&,&0!
𝛾
[
0.9,1
]
J!!#(&*997G!01,!*6D4(%,<!+9(6,+!*%,!%,89(6*0,<!*9$&.!
01,!+9(6(&.!<(%,60($&!27!*!/*60$%!$/!/$4%!*.*(&!+$!01*0!01,!+9(6,!
+0*6E+!1*),!(+$0%$8(6!(&'!*&<!01%$4.1'89*&,!%,+$940($&+J!^,!
+42+*-89,!01,!+9(6,!+0*6E+!27!*!/*60$%!$/!03$!=(J,JG!0$!>--
3
!
$%!"JR--
3
@!0$!0%*(&!01,!+9(6,!-$0($&!8%,<(60($&!&,03$%EJ!\$!
+42+*-89(&.!(+!8,%/$%-,<!31,&!0%*(&(&.!01,!(&0,%8$9*0$%J!
! ^,! 0%*(&! $4%!+9(6,!-$0($&!*&<!(&0,%8$9*0($&!&,03$%E+!/$%!
256,000!+0,8+!4+(&.!U?UAG!3(01!*&!(&(0(*9!9,*%&(&.!%*0,!$/!
10
−4
G!31(61!(+!%,<46,<!0$!0!3(01!8$97!+61,<49(&.!=,:8$&,&0!
$/!0.9@G!3,(.10!<,6*7!$/!0!*&<!-$-,&04-!$/!0.90J!^,!-*+E!
$40!2*6E.%$4&<!)$:,9+!31,&!6$-840(&.!01,!0%*(&(&.!9$++J!C&!
01,!6*+,!$/!/,0*9!HIBG!3,!$),%'+*-89,!01,!#,gU!8$%0($&!$/!
01,!0%*(&(&.!<*0*!a),/$9<G!*&<!01,![Bk!8$%0($&!0,&/$9<J!^,!
+(-897!8(6E!01,!-$<,9!$/!01,!9*+0!,8$61!/$%!-$<,9!+,9,60($&!
240!+0(99!-$&(0$%!)*9(<*0($&!-,0%(6+!/$%!8$0,&0(*9!$),%a00(&.J!
A.2 Validation Metrics
! H(-(9*%!0$!$4%!0%*(&(&.!9$++!=T@G!*99!$4%!)*9(<*0($&!-,0%(6+!
6$-8,&+*0,!/$%!*&7!.9$2*9!%(.(<!-$0($&!$e+,0!-*7!01*0!,:(+0!
2,03,,&!8%,<(60,<!*&<!0%4,!+9(6,!-$0($&o!+,,!=T@J!C&!*<<(0($&!
0$!01,!AHp!𝓛
MSE
(𝐮, 𝐲) = (1 𝑁
)
𝐮 𝐲
𝐹
2
!$/!01,!8%,<(60,<!
+9(6,!-$0($&!𝐮
𝑁×3
!3J%J0J!0%4,!-$0($&!𝐲
𝑁×3
G!3,!4+,!
01,!*),%*.,!,&<'8$(&0!,%%$%!=php@!-,0%(6!NFFPG!<,a&,<!*+!
!
𝓛
EPE
(𝐮, 𝐲) = (1 𝑁
)
𝐮 𝐲
2,1
,!
=U"@!
01*0!(+G!01,!-,*&!p469(<,*&!<(+0*&6,!2,03,,&!01,!,&<'8$(&0+!
$/!03$!+9(6,!-$0($&!a,9<+!=2$01!-,0%(6+!+1$3&!1,%,!3(01$40!
%(.(<!6$-8,&+*0($&!/$%!69*%(07@J!C&!8%,)($4+!3$%E!N>VG!>YPG!*!
+(-(9*%!-,0%(6!(+!8%$8$+,<!0$!-,*+4%,!01,!*),%*.,!p469(<,*&!
<(+0*&6,!2,03,,&!01,!8%,<(60,<!*&<!0%4,!+9(6,!8$+(0($&+!*0!01,!
*&61$%!8$(&0+!$/!01,!+9(6,+!=*&61$%!8$(&0!,%%$%G!Uhp@`!
!
𝓛
APE
(𝐮, 𝐲) = (1 3
)
𝐮
{0,1,2}
𝐲
{0,1,2}
2,1
,!
=U>@!
(&!31(61!𝐮
{0,1,2}
!*&<!𝐲
{0,1,2}
!<,&$0,!01,!8$+(0($&!),60$%+!*0!
01,!*&61$%!8$(&0+!$/!01,!.%(<+!01*0!<,a&,!01,!)$:,9!9$6*0($&+!
$/!01,!%,+8,60(),!+9(6,+!(&!F?!+8*6,J!g78(6*997G!*&61$%!8$(&0+!
*%,!*++4-,<!0$!2,!*0!01,!6,&0,%G!2$00$-!9,/0!*&<!2$00$-!%(.10!
6$%&,%+!$/!*!.(),&!+9(6,J!U++4-(&.!01*0!+9(6,+!*%,!4&<,%.$(&.!
%(.(<!-$0($&G!01,!Uhp!(+!,D4()*9,&0!0$!01,!php!*),%*.,<!$&!
01,!%(.10'0%(*&.49*%!%,.($&!/$%-,<!27!01,!01%,,!*&61$%!8$(&0+!
$&!01,!%,/,%,&6,!+9(6,J!
A.3 SVRnet Model Implementation
! #$%!%,8%$<46(2(9(07G!3,!8$%0!01,!$%(.(&*9!g,&+$%#9$3!"J"F!
(-89,-,&0*0($&!$/!HIB&,0!N>VP!3(01!*&!C&6,80($&!2*6E2$&,!
0$!h7g$%61!"J"FG!31,%,!3,!4+,!*!B,+\,0'FQ!2*6E2$&,!*&<!*!
8%,<(60($&!1,*<! 6$&+(+0(&.!$/! *!512 × 9!<,&+,!9*7,%G!31(61!
8%,<(60+!01,!+9(6,!8$+(0($&!),60$%+!*0!01%,,!*&61$%!8$(&0+J!^,!
a&<!01*0!>?!2*061!&$%-*9(X*0($&!2*+,<!$&!6$99,60,<!+0*0(+0(6+!
<$,+!&$0!8,%/$%-!3,99!*0!0,+0!0(-,!*&<!$80!0$!&$%-*9(X,!,*61!
,:*-89,!2*+,<!$&!01,!+0*0(+0(6+!$/!,*61!+9(6,!+0*6EJ!^,!4+,!
+42+*-89,<!+9(6,+!$/! +(X,!128 × 128!8(:,9+! *&<! (&0,%8$9*0,!
01,!8%,<(60,<!*&61$%!8$(&0!8$+(0($&!),60$%+!0$!*!9(&,*%!-$0($&!
a,9<!*&<!+420%*60!01,!+9(6,!)$:,9!6$$%<(&*0,+!0$!$40840!+9(6,!
-$0($&J!^,!0%*(&!01(+!(-89,-,&0*0($&!$/!HIB&,0!4+(&.!01,!
%,.49*%!AHp!9$++!$&!$40840!+9(6,!-$0($&!a,9<J!!^,!(&(0(*9(X,!
01,!-$<,9!3(01!01,!0$%61)(+($&!C-*.,\,0"dt)"!3,(.10+J!
A.4 SVoRT Model Configuration
! #$%!6$-8*%(+$&!3(01!HI$Bg!=)>@G!3,!4+,!-$<,9!3,(.10+!
8%$)(<,<!27!j4!,0!*9J!N>YP!$&!01,(%!%,8$+(0$%7G!6$&a.4%,!01,!
-$<,9!0$!4+,!$&,!+9(6,!+0*6E!3(01!*!+9(6,!.*8!$/!FJ>--G!*&<!
$80(-(X,!01,!%,6$&+0%460($&!hH#!=+9(6,!01(6E&,++!$/!"JR--@!
/$%!)*9(<*0($&!*664%*67!=(J,JG!*),%*.,!-$0($&!,&<'8$(&0!,%%$%@!
$&!01,!">!#,gU!)*9(<*0($&!+425,60+!4+(&.!*&!,:8$&,&0(*9!.%(<!
+,*%61J!^,! a:,<! 01,! +0*6E! 8$+(0($&*9! ,&6$<(&.! $/! HI$Bg!0$!
V!=%*01,%!01*&!*!%*&<$-!(&0,.,%@!/$%!%,8%$<46(29,!%,+490+J!^,!
6$&),%0!HI$Bgn+!0%*&+/$%-!$40840!0$!<,&+,!-$0($&!a,9<+!0$!
6$-840,!01,!-$0($&!AHp!*&<!php!/$%!)*9(<*0($&!*664%*67J!
B. Additional SVR Results
! Z,%,G!3,!8%$)(<,!*<<(0($&*9!HIB!%,+490+!$&!$4%!*<490!*&<!
/,0*9!<*0*+,0+J!#(.4%,!]"!)(+4*9(X,+!%,6$&+0%460($&+!$/!*<490!
2%*(&!AB!)$94-,+!/$%!01%,,!$/!$4%!)*9(<*0($&!+425,60+G!3(01!
*99!01%,,!$%01$.$&*9!)(,3+!+1$3&!/$%!6$-89,0,&,++J!#(.4%,!
]>!+(-(9*%97!)(+4*9(X,+!/,0*9!%,6$&+0%460($&+J!^,!(&694<,!01,!
6$%%,+8$&<(&.!HI$Bg)>!%,+490+!/$%!6$-8*%(+$&G!&$0(&.!01*0!
HIB&,0!%,6$&+0%460($&+!*%,!.*%29,<!(&!-*&7!6*+,+!=+,,!a%+0!
%$3!$/!#(.4%,!T@!*&<!*%,!9,++!-,*&(&./49!0$!6$-8*%,!*.*(&+0J!
!
"F!
!
ABIDE 50975
(a) Slice Stack
(b) Splat (Ours, True Motion)
(c) Interpolated (Ours, True Motion)
(d) True Volume
MCIC A00036476
(a) Slice Stack
(b) Splat (Ours, True Motion)
(c) Interpolated (Ours, True Motion)
(d) True Volume
"
Coronal Acquisition EPE: 2.00mm EPE: 0.00mm
Sagittal Acquisition EPE: 1.70mm EPE: 0.00mm
Axial Acquisition EPE: 2.35mm EPE: 0.00mm
!
"Q!
!
Buckner39 990921
(a) Slice Stack
(b) Splat (Ours, True Motion)
(c) Interpolated (Ours, True Motion)
(d) True Volume
Figure B1: SVR of adult brain scans.
<$" 6+#219+=$" *2." 8>?" .$#29%#" *," #9+ 0$" #%10E#" #F,%;$#+=$/" 2#+ ,7" .1,/*5" #9+0$" 5*%+*," @1'(" G#+,7" %;$"
-.$/+0%$/"5*%+*,"#%10E!"A$"#-91%"#9+0$"/1%1"%*".$0*,#%.20%"%;$"2,/$.9F+,7"DH"6*925$"@:'("<
$"+,%$.-*91%$"%;$"5+##+,7"+,%$,#+%+$#"@;*9$#'"+,"*2."
.$0*,#%.20%+*,"@0'("<$"1//+%+*,199F"6+#219+=$"+,"@:'"1,/"@0'"#-91%"1,/"+,%$.-*91%$/".$#29%#"*:%1+,$/"A;$,"%;$"%.2$"5*%+*,"#%10E"+#"2#$/("
FeTA Sub 0
01
(a) Slice Stack
(b) Splat (SVoRTv2, Ours)
(c) SVoRTv2
(c) Interp (SVoRTv2, Ours)
(d) Interp (Ours)
(d) True Volume
FeTA Sub 010
"
Random Acquisition EPE: 3.51mm EPE: 1.97mm
Random Acquisition EPE: 4.78mm EPE: 1.64mm
!
"Y!
!
(a) Slice Stack
(b) Splat (SVoRTv2, Ours)
(c) Interp (SVoRTv2, Ours)
(d) True Volume
FeTA Sub 036
(a) Slice Stack
(b) Splat (SVoRTv2, Ours)
(c) SVoRTv2
(c) Interp (SVoRTv2, Ours)
(d) Interp (Ours)
(d) True Volume
FeTA Sub 0
44
(a) Slice Stack
(b) Splat (SVoRTv2, Ours)
(c) SVoRTv2
(c) Interp (SVoRTv2, Ours)
(d) Interp (Ours)
(d) True Volume
Figure B2: Single-stack fetal SVR. <$" 6+#219+=$"%;$"8>?".$#29%#"*,"619+/1%+*,"#2:K$0%#"L.*5"%;$"M$NO"/1%1#$%"PQDR("Y2."
.$#29%#"09*#$9F"
.$#$5:9$"%;$"7.*2,/"%.2%;"6*925$#"A;+9$"8>*?N6C".$0*,#%.20%+*,#"@A+%;"*2."+,%$.-*91%+*,"1--9+$/'"$&;+:+%"#-1%+19"/+#%*.%+*,"L
.*5"+,1002.1%$"
#9+0$"19+7,5$,%("
Random Acquisition EPE: 2.40mm EPE: 1.25mm
Random Acquisition EPE: 3.40mm EPE: 1.91mm