!
!
References
[1] Mitsuhiro Nishida et al. Detailed semiautomated MRI based
morphometry of the neonatal brain: Preliminary results.
NeuroImage, 32(3):1041–1049, 2006.
[2] Chao J. Liu et al. Quantification of volumetric morphometry
and optical property in the cortex of human cerebellum at
micrometer resolution. NeuroImage, 244:118627, 2021.
[3] Maxwell L. Elliott et al. Brain morphometry in older adults
with and without dementia using extremely rapid structural
scans. NeuroImage, 276:120173, 2023.
[4] Bruce Fischl. FreeSurfer. NeuroImage, 62(2):774–781, 2012.
[5] Amy Zhao, Guha Balakrishnan, Fredo Durand, John V.
Guttag, and Adrian V. Dalca. Data augmentation using
learned transformations for one-shot medical image
segmentation. In Proc. CVPR, 2019.
[6] Lilla Zöllei, Juan Eugenio Iglesias, Yangming Ou, P. Ellen
Grant, and Bruce Fischl. Infant FreeSurfer: An automated
segmentation and surface extraction pipeline for T1-weighted
neuroimaging data of infants 0–2 years. NeuroImage,
218:116946, 2020.
[7] Alan C. Evans, Andrew L. Janke, D. Louis Collins, and
Sylvain Baillet. Brain templates and atlases. NeuroImage,
62(2):911–922, 2012.
[8] Shadab Khan et al. Fetal brain growth portrayed by a
spatiotemporal diffusion tensor MRI atlas computed from in
utero images. NeuroImage, 185:593–608, 2019.
[9] Adrià Casamitjana, and Juan Eugenio Iglesias. High-
resolution atlasing and segmentation of the subcortex:
Review and perspective on challenges and opportunities
created by machine learning. NeuroImage, 263:119616,
2022.
[10] Shuzhou Jiang, Hui Xue, Alan Glover, Mary Rutherford,
Daniel Rueckert, and Joseph V. Hajnal. MRI of moving
subjects using multislice snapshot images with volume
reconstruction (SVR): Application to fetal, neonatal, and
adult brain studies. IEEE Trans. Med. Imaging, 26(7):967–
980, 2007.
[11] Ali Gholipour, Judy A. Estroff, and Simon K. Warfield.
Robust super-resolution volume reconstruction from slice
acquisitions: Application to fetal brain MRI. IEEE Trans.
Med. Imaging, 29(10):1739–1758, 2010.
[12] Kio Kim, Piotr A. Habas, Francois Rousseau, Orit A. Glenn,
Anthony J. Barkovich, and Colin Studholme. Intersection
based motion correction of multislice MRI for 3-D in utero
fetal brain image formation. IEEE Trans. Med. Imaging,
29(1):146–158, 2010.
[13] Maria Kuklisova-Murgasova, Gerardine Quaghebeur, Mary
A. Rutherford, Joseph V. Hajnal, and Julia A. Schnabel.
Reconstruction of fetal brain MRI with intensity matching
and complete outlier removal. Med. Image Anal.,
16(8):1550–1564, 2012.
[14] Bernhard Kainz et al. Fast volume reconstruction from
motion corrupted stacks of 2D slices. IEEE Trans. Med.
Imaging, 34(9):1901–1913, 2015.
[15] Amir Alansary et al. PVR: Patch-to-Vo l u m e R e c o n s t r u c t i o n
for large area motion correction of fetal MRI. IEEE Trans.
Med. Imaging, 36(10):2031–2044, 2017.
[16] Sébastien Tourbier et al. Automated template-based brain
localization and extraction for fetal brain MRI reconstruction.
NeuroImage, 155:460–472, 2017.
[17] Michael Ebner et al. An automated framework for
localization, segmentation and super-resolution
reconstruction of fetal brain MRI. NeuroImage, 206:116324,
2020.
[18] Alena Uus, Tong Zhang, Laurence H. Jackson, ?omas A.
Roberts, Mary A. Rutherford, Joseph V. Hajnal, and Maria
Deprez. Deformable slice-to-volume registration for motion
correction of fetal body and placenta MRI. IEEE Trans. Med.
Imaging, 39(9):2750–2759, 2020.
[19] Francois Rousseau, Orit A. Glenn, Bistra Iordanova, Claudia
Rodriguez-Carranza, Daniel B. Vigneron, James A.
Barkovich, and Colin Studholme. Registration-based
approach for reconstruction of high-resolution in utero fetal
MR brain images. Acad. Radiol., 13(9):1072–1081, 2006.
[20] Benjamin Hou et al. 3-D Reconstruction in canonical co-
ordinate space from arbitrarily oriented 2-D Images. IEEE
Trans. Med. Imaging, 37(8):1737–1750, 2018.
[21] Benjamin Hou et al. Computing CNN loss and gradients for
pose estimation with Riemannian geometry. In Proc.
MICCAI, 2018.
[22] Seyed Sadegh Mohseni Salehi, Shadab Khan, Deniz
Erdogmus, and Ali Gholipour. Real-time deep pose
estimation with geodesic loss for image-to-template rigid
registration. IEEE Trans. Med. Imaging, 38(2):470–481,
2019.
[23] Yu ch en P e i, L i sh en g Wa ng , F en qi a ng Z ha o, Ta o Z ho ng ,
Lufan Liao, Dinggang Shen, and Gang Li. Anatomy-guided
convolutional neural network for motion correction in fetal
brain MRI. In Proc. MLMI, 2020.
[24] Pak-Hei Yeung, Moska Aliasi, Aris T. Papageorghiou,
Monique Haak, Weidi Xie, and Ana I. L. Namburete.
Learning to map 2D ultrasound images into 3D space with
minimal human annotation. Med. Image Anal., 70:101998,
2021.
[25] Junshen Xu, Daniel Moyer, P. Ellen Grant, Polina Golland,
Juan Eugenio Iglesias, and Elfar Adalsteinsson. SVoRT:
Iterative transformer for slice-to-volume registration in fetal
brain MRI. In Proc. MICCAI, 2022.
[26] Elise Turk et al. Functional connectome of the fetal brain. J.
Neurosci., 39(49):9716–9724, 2019.
[27] Daniel Sobotka et al. Motion correction and volumetric
reconstruction for fetal functional magnetic resonance
imaging data. NeuroImage, 255:119213, 2022.
[28] Xiaohuan Cao, Jianhua Yang, Jun Zhang, Dong Nie,
Minjeong Kim, Qian Wang, and Dinggang Shen. Deformable
image registration based on similarity-steered CNN
regression. In Proc. MICCAI, 2017.
[29] Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John
Guttag, and Adrian V. Dalca. An unsupervised learning model
for deformable medical image registration. In Proc. CVPR,
2018.
[30] Tony C. W. Mok, and Albert C. S. Chung. Fast symmetric
diffeomorphic image registration with convolutional neural
networks. In Proc. CVPR, 2020.
[31] Sean I. Young, Yaël Balbastre, Adrian V. Dalca, William M.