2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, DECEMBER 2023
./$4+$0!E04&2+,3!9<N;6!9>T;!$,-!.4)(#$.4+(!$%&2$3+,3!9<>;6!9>D;!
4&(#,+Y8&.!8,-&2!),&!./$4+)"4&*/)2$0!-&,)+.+,3!12$*&7)2P!
$,-!$04&2,$4&.!-&,)+.+,3!$,-!,&47)2P!7&+3#4!8/-$4&!+,!$,!
)/4+*+F$4+),! 12$*&7)2P! 1)2! /2+,(+/0&-! .8/&2%+.+),@! A#+0&!
IBZ!$(()**)-$4&.!$,5!0&$2,&-!$,-!&%&,!,),"-+J&2&,4+$'0&!
2&(),.428(4+),!-&,)+.&26! .+*/05! U8.4! 42$+,+,3!),&!$00&%+$4&.!
4#&!,&&-!4)!E,-!$!-&,)+.&2!.8+4&-!1)2!$!3+%&,!4$.P@!A&!0&$2,!
2&(),.428(4+),!-&,)+.&2.!'5!42$+,+,3!4#&*!.&01".8/&2%+.&-!),!
2&(),.428(4+),!&=$*/0&.!K.&3*&,4$4+),.!)2!+*$3&.L!$02&$-5!
$%$+0$'0&@!a+3@!:!.8**$2+F&.!4#&!IBZ!12$*&7)2P!7+4#!-$4$!
$83*&,4$4+),!$,-!-2)/)846!,)4+,3!4#$4!4#&!-&,)+.+,3!+.!')4#!
./$4+$0!$,-!4&*/)2$0!K$(2)..!42$+,+,3!.4&/.L!$.!.#)7,!'5!K$L!
$,-!K'L@!`,!a+3@!<6!7&!.#)7!),&!$//0+($4+),!)1!IBZ!K()24+($0!
/$2(&00$4+),L!$,-!-&*),.42$4&!4#$4!+4!.+3,+E($,405!+*/2)%&.!
.8/&2%+.+),!)1!$!7&00"/&21)2*+,3!'$.&0+,&!,&47)2P!9>H;@!A&!
,)4&!4#$4!-&,)+.+,3!2&(),.428(4+),.!/).4!#)(!/2)-8(&.!/))2!
)84()*&.!7#&2&$.!,$+%&05!$04&2,$4+,3!32$-+&,4!-&.(&,4!$,-!
-&,)+.+,3!2&,-&2.!42$+,+,3!-+%&23&,4@!
! V82!(),42+'84+),.!$2&!$.!1)00)7.@!a+2.46!7&!-&2+%&!IBZ!'5!
2&+,4&2/2&4+,3!$!.&*+".8/&2%+.&-!+*$3&!2&(),.428(4+),!4$.P!
$.!$,!)/4+*+F$4+),!/2)'0&*!4#$4!($,!'&!.)0%&-!'5!$04&2,$4+,3!
-&,)+.+,3!$,-!.4)(#$.4+(32$-+&,4!-&.(&,4!.4&/.@!!I&(),-6!7&!
$//05!IBZ!),!47)!4$.P.!12)*!*&-+($0!+*$3+,3!K<Z!()24+($0!
/$2(&00$4+),!$,-!>Z!'2$+,!2&(),.428(4+),L!$,-!-&*),.42$4&!$!
.8'.4$,4+$0!+*/2)%&*&,4!+,!4#&!2&(),.428(4+),!Y8$0+45!)%&2!
.8/&2%+.&-!$,-!.4)(#$.4+(!$%&2$3+,3!'$.&0+,&.6!&./&(+$005!+,!
4#&!'$2&05!.8/&2%+.&-!K7+4#!1&7!0$'&0&-!&=$*/0&.L!.(&,$2+)@!!
2 RELATED WORK
b&380$2+F$4+),!'5!-&,)+.+,3!KbcZL!9<N;!+.!$!(0$..+($0!+*$3&!
2&(),.428(4+),!*&4#)-!4#$4!8.&.!-&,)+.&2.!4)!2&380$2+F&!$,!
+*$3&@!S5!(),42$.46!)82!7)2P!+.!$!.&*+".8/&2%+.&-!0&$2,+,3!
*&4#)-!4#$4!8.&.!-&,)+.&2.!4)!2&380$2+F&!0&$2,+,3@!A&!'2+&d5!!
2&%+&7!bcZ!9<N;!$,-!,),"-&,)+.+,3"'$.&-!.&*+".8/&2%+.+),!
4&(#,+Y8&.!1)2!+*$3&!2&(),.428(4+),!$.!$!0&$-8/!4)!IBZ@!
2.1 Regularization by Denoising
X$,5!+,%&2.&!/2)'0&*.!+,!+*$3+,3!$,-!%+.+),!$2&!+,#&2&,405!
+00"(),-+4+),&-!)2!&%&,!+00"/).&-!$,-!2&Y8+2&!$,!$..8*/4+),!
)1!]2&380$2+45^!4)!2&()%&2!$!/0$8.+'0&!.)084+),@!b&380$2+F+,3!
+,%&2.&!/2)'0&*.!7+4#!42$-+4+),$0!4&(#,+Y8&.!)14&,!+,%)0%&.!
$!-)*$+,"$3,).4+(!2&380$2+45!4&2*!.8(#!$.!4#&!4)4$0!%$2+$4+),!
.&*+",)2*!$,-!+4.!3&,&2$0+F$4+),.!9<D;6!9<H;!)2!32$/#"'$.&-!
K,),"0)($0L!2&380$2+F&2.!9>N;6!9>Q;6!')4#!)1!7#+(#!$2&!8.8$005!
(#).&,!)84!)1!*)-&0+,3!)2!)/4+*+F$4+),!(),%&,+&,(&6!2$4#&2!
4#$,!4)!2&d&(4!$!428&!,)4+),!)1!2&380$2+45!+,!$!(#).&,!-)*$+,@!
! e*),3!4#&.&!2&380$2+F&2.6!4#&!'+0$4&2$0!2&380$2+F&2!9>R;!+.!
.#)7,!4)!'&!&J&(4+%&!1)2!.)0%+,3!()*/84&2!%+.+),!/2)'0&*.!
.8(#!$.!+*$3&!2&1)(8.!9?T;6!)/4+($0!d)7!&.4+*$4+),!9>N;6!9?:;!
$,-!+*$3&!.8/&22&.)084+),!9?<;@!S+0$4&2$0!2&380$2+F$4+),!9>R;!
&..&,4+$005!&=/2&..&.!2&380$2+45!)1!$,!+*$3&!$.!+4.!
!-+.4$,(&!
12)*!$!'+0$4&2$0"E04&2&-!%&2.+),!)1!4#&!.$*&!+*$3&!4)!-&E,&!
4#&!/2+)2!+,!$,!$,+.)42)/+(!-+J8.+),!./$(&!9?>;@!V4#&2!(0$..+(!
&-3&"/2&.&2%+,3!E04&2.!4#$4!($,!'&!/0833&-!+,4)!4#&!'+0$4&2$0!
.)0%&2!+,(08-&!,),"0)($0!*&$,.!-&,)+.+,3!9??;!$,-!42+0$4&2$0!
9?D;!E04&2.6!')4#!)1!7#+(#!($,!'&!+*/0&*&,4&-!&[(+&,405@!
! O#&!]2&380$2+F$4+),!'5!-&,)+.+,3^!KbcZL!12$*&7)2P!9<N;!
($,!'&!.&&,!$.!&=4&,-+,3!'+0$4&2$0!2&380$2+F$4+),6!&=/2&..+,3!
2&380$2+F&2.!+,!4&2*.!)1!$2'+42$25!+*$3&!-&,)+.&2.@!b&&#)2.4!
$,-!I(#,+4&2!9<Q;!(0$2+15!4#&!(),-+4+),.!),!.8(#!-&,)+.&2.!4)!
38$2$,4&&!(),%&23&,(&!7#+0&!9?H;!-&*),.42$4&!4#&!84+0+45!)1!
0&$2,&-!-&,)+.&2.!1)2!2&380$2+F$4+),@!\0).&05!2&0$4&-!4)!bcZ!
+.!4#&!)0-&2!]/083"$,-"/0$5!/2+)2.^!Kf>L!*&4#)-!9<R;6!7#+(#!
8.&.!$!-&,)+.+,3!.4&/!+,!/0$(&!)1!4#&!-&,)+.+,3!)/4+*F$4+),!
+,!bcZ@!A#+0&!IBZ!$0.)!8.&.!$,!)/4+*+F$4+),"12&&!-&,)+.+,3!
.42$4&35!4)!$((&0&2$4&!42$+,+,36!4#+.!.42$4&35!+.!-&2+%&-!12)*!
./&(42$0!E04&2!4#&)25!9?N;!4)!&,.82&!4#&!-&,)+.+,3!.4&/!*)2&!
1$+4#18005!$//2)=+*$4&.!4#+.!)/4+*+F$4+),@!A&! .42&..!,&+4#&2!
bcZ!,)2!f>!$--2&..&.!.8/&2%+.+),!$.!+,!)82!7)2P@!
! b&(&,405!/2)/).&-!+*$3&!-&,)+.+,3!4&(#,+Y8&.!45/+($005!
-+./&,.&!7+4#!*)-&0.!)1!-+J8.+),!9?>;6!$,-!0&$2,!12)*!-$4$!
$!(),%)084+),$0!,&82$0!,&47)2P!7#+(#!*$/!,)+.5!+*$3&.!4)!
,)+.&"12&&!),&.!-+2&(405@!Z&,)+.+,3!'$.&-!),!B"C&4!#$.!'&&,!
$//0+&-!4)!$!7+-&!%$2+&45!)1!+*$3&!45/&.6!+,(08-+,3!*&-+($0!
9?Q;6!9?R;6!.$4&00+4&!9DT;!$,-!,$482$0!9D:;!),&.@!I8(#!d&=+'+0+45!
)1!B"C&4!#$.!$0.)!'&&,!$//0+&-!4)!-&,)+.+,3!2&(),.428(4+),.!
9D<;6!9D>;6!9D?;6!)'%+$4+,3!4#&!,&&-!4)!-&,)+.&!8.+,3!-+.(2&4&!
E04&2.!9DD;6!9DH;6!7#+(#!$2&!()*/84$4+),$005!&=/&,.+%&@!IBZ!
0&%&2$3&.!.8(#!-&,)+.&2.!4)!.8/&2%+.&!+*$3&!2&(),.428(4+),@!
2.2 Semi-supervised Learning
`,!4#&!*$(#+,&!0&$2,+,3!0+4&2$482&6!.&*+".8/&2%+.&-!0&$2,+,3!
KIIWL!+.!$!1$*+05!)1!$//2)$(#&.!4#$4!0&$2,!8.+,3!')4#!0$'&0&-!
$,-!8,0$'&0&-!-$4$6!$00)7+,3!0&$2,+,3!$03)2+4#*.!4)!&=/0)+4!
$'8,-$,4!8,0$'&0&-!-$4$!4)!&,#$,(&!$!.*$00&2!.&4!)1!0$'&0&-!
&=$*/0&.@!\822&,4056!$!0$23&!,8*'&2!)1!7&00"/&21)2*+,3!IIW!
*&4#)-.!+,%)0%&!$--+,3!$!2&380$2+45!0)..!),!8,0$'&0&-!-$4$!
4)!4#&!42$+,+,3!)'U&(4+%&6!0&$%+,3!$00!)4#&2!$./&(4.!)1!42$+,+,3!
8,(#$,3&-!9DN;@!S2)$-05!./&$P+,36!7&!($,!(0$..+15!.8(#!IIW!
*&4#)-.!$.!&+4#&2!.4)(#$.4+(!K8.&-!+,!')4#!(0$..+E($4+),!$,-!
2&(),.428(4+),!4$.P.L!)2!./$4+$0!K8.&-!),05!+,!2&(),.428(4+),L!
.+,(&!(0$..+E($4+),!)84/84!-)!,)4!#$%&!./$4+$0!-+*&,.+),.@!
! I4)(#$.4+(!&,.&*'0+,3!4&(#,+Y8&.!9<>;6!9>>;6!9>?;6!9>D;!$--!
$!2&380$2+45!4&2*!4)!4#&!42$+,+,3!)'U&(4+%&!4)!&,.82&!4#$4!4#&!
,&47)2P!)84/84!1)2!$!3+%&,!+*$3&!-)&.!,)4!-&%+$4&!4))!*8(#!
12)*!+4.!/2&%+)8.!%$08&.@!B.&-!1)2!(0$..+E($4+),!4$.P.6!4#&!g!
*)-&0!9DQ;!+.!$!.+*/0&!4&(#,+Y8&!4#$4!/&,$0+F&.!-&%+$4+),!)1!
4#&!(822&,4!)84/84!12)*!+4.!0$.4!%$08&6!&..&,4+$005!42&$4+,3!4#&!
0$.4!)84/84!$.!$!.)14!)2!/.&8-)"4$23&4@!O&*/)2$0!&,.&*'0+,3!
Fig. 1. Supervision by Denoising. We train a reconstruction network on unlabeled data u
nolabel
. Reconstructor output z
is denoised spatially using a
spatial denoiser (a) then stochastic averaging (b) to produce pseudo-target z. The reconstruction loss between z
and z is scaled and added to that
of labeled pair (x
labeled
, y) and the combined used to update reconstructor weights. The denoising pipeline is highlighted in blue. See Algorithm 1.
Reconstructor with
channel dropout
augmentation